REFERENCE USE ONLY

ANALYSIS OF PREDICTED AIRCRAFT WAKE VORTEX TRANSPORT AND COMPARISON WITH EXPERIMENT

Volume II -- Appendixes

M.R. Brashears N.A. Logan S.J. Robertson K.R. Shrider C.D. Walters

APRIL 1974 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22151.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION SYSTEMS RESEARCH AND DEVELOPMENT SERVICE Washington DC 20591 NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FAA-RD-74-74.II		
4. Title and Subtitle		5. Report Date
ANALYSIS OF PREDICTED A	IRCRAFT WAKE VORTEX TRANSPORT	April 1974
AND COMPARISON WITH EXP		6. Performing Organization Code
Volume II Appendixes		
		8. Performing Organization Report No.
7. Author's) M.R. Brashears	s, N.A. Logan, S.J. Robertson	DOT-TSC-FAA-74-7.11
K.R. Shrider and C.D. W.		
9. Performing Organization Name and	Address	10. Work Unit No. (TRAIS)
Lockheed Missiles & Spac	ce Company, Inc.*	FA405/R4115
Huntsville Research & En	ngineering Center	11. Contract or Grant No.
4800 Bradford Drive		DOT-TSC-593
Huntsville AL 35807		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Add	ress	
U.S. Department of Trans	sportation	Final Report
Federal Aviation Adminis	stration	April to December 1973
Systems Research and Dev	velopment Service	14. Sponsoring Agency Code
Washington DC 20591		
15. Supplementary Notes	U.S. Department of Transportat	tion
*Under contract to:	Transportation Systems Center	
-onder contract to:	Kendall Square	
	Cambridge MA 02142	
16. Abstract		

A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A parametric and sensitivity analysis is presented to establish baseline uncertainties in the algorithm to allow meaningful comparison of predicted and measured vortex tracks. A detailed comparison of predicted vortex tracks with photographic and groundwind vortex data is presented. Excellent agreement between prediction and measurement is shown to exist when sufficient wind data are available. Application of the Pasquill class criteria is shown to be an effective technique to describe the wind profile in the absence of detailed wind data. The effects of wind shear and the Ekman spiral on vortex transport are discussed. It is shown that the combination of wind shear and ground plane may be possible mechanisms underlying vortex tilting and a theoretical explanation is advanced that is somewhat supported by comparison with the experimental data. Finally, recommendations for further vortex data collection in the vicinity of an airport are presented.

17. Key Words		18. Distribution Statement		
Vortices Aircraft Wakes Wake Turbulence Wind Shear Wake Vortex Predic	Ground Plane Vortex Tilting Vortex Transport tive System	THROUGH THE	VAILABLE TO THE F NATIONAL TECHNIC. SERVICE, SPRINGFIE 1.	AL
19. Security Classif. (of this re Unclassified	port) 20. Security Cl. Unclass:	assif. (of this page) ified	21. No. of Pages 246	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

PREFACE

This document represents the final report of Contract DOT-TSC-593 and covers the period 2 April to 2 December 1973.

This study was performed by personnel at the Lockheed Missles & Space Company, Inc., Huntsville Research & Engineering Center, Huntsville, Alabama. The project engineer and principal investigator for this study was Dr. M.R. Brashears of the Fluid Mechanics Applications Group.

The authors are especially grateful to Dr. J.N. Hallock, TSC Contracting Officer's Technical Monitor, for his contributions and able assistance during the performance of this contract. We also sincerely thank Dr. D.C. Burnham and Mr. Tom Sullivan of TSC for providing the vortex tracking data. To Mr. L. Garodz and Mr. N. Miller of NAFEC, we express our appreciation for their support during the testing and in reduction of the rawinsonde and tower meteorological sensor data.

CONTENTS

Section	VOLUME I	Page
1	INTRODUCTION	1-1
2	VORTEX TRANSPORT MODEL	2-1
	2.1 Fundamentals of Vortex Motion2.2 Vortex Decay, Bursting and Instability2.3 The Effect of Mutual and Self-Induction2.4 Unification of the Wake Vortex Transport Model	2-1 2-13 2-16 2-16
3	MODEL SENSITIVITY ANALYSIS AND PARAMETRIC STUDY	3-1
	 3.1 Wind Field Data 3.2 Aircraft Mix 3.3 Corridor Spread 3.4 Vortex Circulation and Separation 3.5 Vortex Decay 	3 - 1 3 - 9 3 - 1 6 3 - 2 5 3 - 3 8
4	PROOF OF CONCEPT TESTS	4 - 1
	 4.1 NAFEC Test Facilities 4.2 Determination of the Wind Profile 4.3 Photographic Tracking of Aircraft Vortices 4.4 Ground Wind Vortex Tracking Considerations 4.5 Description of the Vortex Signature 	4 - 1 4 - 2 4 - 4 4 - 9 4 - 11
5	COMPARISON OF PREDICTED VORTEX TRANSPORT WITH EXPERIMENTAL RESULTS	5-1
	5.1 Comparison of Predicted and Measured Ground Wind Vortex Signatures	5-1
	5.2 Comparison of Predicted and Measured Vortex Tracks	5 - 7
	5.3 The Pasquill Classes and Their Applications	5-30
	5.4 Representative Vortex Tracks for Various Aircraft Types	5 - 38
	5.5 Determination of Wind Shear	5-64
	5.6 Effect of Ekman Spiral on Cross-Runway Wind Profile	5-65

CONTENTS (CONTINUED)

Section		Page
	5.7 Analysis of Vortex Tilting Computed by Photographic Data Reduction	5 - 69
	5.8 Comparison of Predicted Vortex Separation with Measured Separation	5 - 7 5
	5.9 Discussion of Core Size Maximum Velocity and Circulation Decay	5 - 78
6	ANALYSIS OF WIND SHEAR AND GROUND PLANE EFFECTS AS POSSIBLE MECHANISMS CAUSING VORTEX TILTING	6-1
	6.1 Streamlines for a Class of Vortex Fields	6-1
	6.2 Additional Thoughts on Mechanism of Vortex Tilting	6-14
	6.3 Summary of Preliminary Observations on Vortex Tilting	6-21
7	RECOMMENDATIONS FOR VORTEX DATA COLLECTION IN THE VICINITY OF AN AIRPORT	7-1
	7.1 General	7-1
	7.2 Tower Array	7-1
	7.3 Sensor Locations on Towers	7 - 3
	7.4 Data Sampling Rates	7 - 4
	7.5 Wind Measurement	7 - 4
	7.6 Temperature Measurement	7 - 5
	7.7 Barometric Pressure Measurement	7 - 6
	7.8 Relative Humidity Measurement	7-6
	7.9 Acoustic Sounder for Data Above Test Site	7 - 7
	7.10 Summary of Sensor Locations	7 - 7
	7.11 Sensor Calibration	7 - 8
	7.12 Sensor Reliability	7 - 9
	7.13 Discussion of Computed Meteorological Variables	7-10
	7.14 Determination of a Representative Roughness Length	7-12
8	CONCLUSIONS AND RECOMMENDATIONS	8-1
	REFERENCES	9-1

CONTENTS (CONTINUED)

Section	VOLUME II	Page
Appendix	es	
A	Summary of Aircraft Flybys	A-1
В	Probable Stability Conditions Prevalent During Selected NAFEC Flybys at Atlantic City, N.J.	B-1
С	Description of Output Plots of Wake Vortex Transport Computer Program	C-1
D	Description of Input Requirements for Lockheed Wake Vortex Transport Computer Program	D-1
Е	Summary of Line Printer Output of Lockheed Wake Vortex Transport Computer Program	E-1
F	Flow Charts for Lockheed Wake Vortex Transport Computer Program	F-1
G	Summary of Predicted Wake Vortex Tracks and Comparison with Experiment	G-1
Н	Report of Inventions	H-1

Appendix A

SUMMARY OF AIRCRAFT FLYBYS

This appendix summarizes aircraft information for the test days of interest. The first priority flybys are those recorded on 17 and 18 October 1972 and 1 November 1972. However, predictive vortex tracks have been generated for most of the runs shown in this appendix. The wind speed and direction are the unaveraged values recorded at the 140-foot level on the tower corresponding to the time of aircraft passage.

Time (EDT)		10:49	10:53	10:55	10:58	11:01	11:05	11:08	11:12			
Month- Day	(1972)	8-19							->			
Aircraft Heading Month- Day	(mph) true N mag. N)	126	130	128	126	126	126	128	127			
Final Wind Angle (deg	from true N	330	0	350	0	340	340	0				
Final Final Wind Wind Speed Angle (deg		00	9	9	00	2	60	œ				
Initial Wind Angle (deg	from true N)	o	_		*	340		•	0			-1
Initial Wind Speed	(uduu)	œ	ę	4	αD	2			4			
Temp.	(°C)	22	23				•	24	24			
Aircraft Speed	(knots)	125	122	123	120	120	118	120	121			
Aircraft Aircraft Weight Speed	(1000 lb) (knots)	75										
Aircraft Alt. Abreast of	H	170			•	175	170					
ا يو	Tower (ft)	250							-			
Run Label		DC6 78	DC6 79	DC6 80	DC6 81	DC6 82	DC6 83	DC6 84	DC6 85			
Configuration		Landing, level flight, all engines same nower	2									

Configuration	Run Label	Aircraft Aircraft Displace, Alt. ment Abreast	Aircraft Alt. Abreast	Aircraft Aircraft Weight Speed		Temp.	Initial Wind Speed	Initial Wind Angle (dev	Final Final Wind Wind Speed Angle (dep	Final Wind Angle (deg	Aircraft Heading (deg	Month- Day	Time (EDT)
			Tower (ft)	(1000 lb) (knots)	(knots)	(°c)	(uqm)	from true N)	(udur)	from true N	true N) (mph) true N) mag. N)	(1972)	
Landing, level flight, all engines same bower	B727 37	150	100	119	120	28	10	140	1	1	216	8-22	13:03
	B727 38		130	118	123			160	10	160	215		13:07
	B727 39		140	118	115			150	10	150	210		13:12
	B727 40		140	116	116			170	12		212		13:15
	B727 41		140	116	114			150	10		215		13;18
	B727 42		180	115	115		•		15		210		13:22
14	B727 43	•	130	115	112		12		12		215		13:26
	B727 44		130	114	114						212		13;30
	B727 45		06	115	120						214		13:33
	B727 46		120	113	119						214		13:36
	B727 47		160	112	118		;				218		13:40
Holding, level flight, all engines same power	B727 48	200	120	111	330	*	- 1	-1	-1	-1	212	•	13:42

ere (F		22	55	69	26	10	04	98	13	17	21	26	30	34	38
Time (EDT)		11:52	11:55	11:59	06:56	07:01	07:04	07:08	07:13	07:17	07:21	07:26	07:30	07:34	07:38
	(1972)	9-13	9-13	9-13	9-14										
Aircraft Heading (deg	(mph) true N) mag. N)	127	126	125	130	128	127	127	127	125	125				124
Final Wind Angle (deg	from true N	180	180	I	255	L	250	Ē	260	250	l.	ľ.	250	Ê	I
Final Final Wind Wind Speed Angle (deg		2	'n	ļ	αο	I	æ	L	10	2	ţ,	I.	10	f.	1
	from true N)	180	180	190	250	255	260	255	260	250	255	260	260	255	250
Initial Wind S pee d	(uph)	œ	ę	9	6	6	6	11	10	9	00	10	9	10	œ
Temp.	(0°)	26					_								
Aircraft Speed	(knots)	127	125	122	128	135	128	132	130	132	128	128	130	130	130
Aircraft Aircraft Weight Speed	(1000 Ib)	127	126	126	137	136	135	134	133	132	132	131	131	130	130
Aircraft Alt. Abreast of	Tower (ft)	150	140	170	130	160	130	130	150	150	140	140	130	155	135
Aircraft Aircraft Displace- Alt. ment Abreast from of	Tower (ft)	-150													
Run Label		B727 124	B727 125	B727 126	B727 127	B727 128	B727 129	B727 130	B727 131	B727 132	B727 133	B727 134	B727 135	B727 136	B727 137
ation		level flight. s same		•						2	ji				
Configuration		Landing, level fl. all engines same power					Æ								

Time (EDT)		07:43	07:47	07:52	08:44	08:48	08:56	11;25	09:07	09:11	09:15	09:18	09:22	09:25	09:30
	<u>ر</u> ۲		ō	.o	0	õ	ö			0		50	50	50	50
	(1972)	9-14						•	9-15						
Aircraft Heading (deg	from mag. N)	125	124	126	128	126	128	125	127	126	125				
	(mph) true N	255	I	I	I	I	1	260	10	30	Ì	30	10	20	20
Final Wind Speed	(uph)	90	Ĩ	1	I	I	1	14	00	10	Ť	00	11	'n	10
	from true N)	250	250	250	265	260	260	250	20	20	30	20)	30	ľ
Initial Wind Speed	(mph)	10					6	12	10	10	11	œ	1	10	I
Temp.	(0 ⁰)	26	26	26	29	29	29	31	21					,	22
Aircraft Aircraft Weight Speed	(knots)	126	125	126	115	112	115	122	120	120	117	115	116	116	113
Aircraft Weight	(1000 lb) (knots)	128	127	126	122	122	121	126	115	113	112	111	110	110	109
	Tower (ft)	130	135	130	120	120	140	150	147	162	162	150	147	137	158
Aircraft Displace- ment from	Tower (ft)	-150							153	141	159	157	152	160	159
Run Label		B727 138	B727 139	B727 140	B727 141	B727 142	B727 143 or 144	B727 162	B727 178	B727 179	B727 180	B727 181	B727 182	B727 183	B727 184
Configuration		Landing, level flight, all engines same								a)	- 1				•

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Configuration	Run Label	Aircraft Aircraft Displace- Alt. ment Abreast from of	Aircraft Alt. Abreast of	Aircraft Weight	Aircraft Aircraft Weight Speed	Temp.	Initial Wind Speed	Initial Wind Angle (deg	Final Final Wind Wind Speed Angle (deg		Aircraft Heading (deg	Month- Day	Time (EDT)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Tower (ft)	Tower (ft)	(1000 1b)	(knots)	(0°C)	(mph)	from true N)	(udm)	from true N	from mag. N)	(1972)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Landing, level flight, all engines same	B727 185	163	160	108	114	22	6	20	00	20	125	9-15	09:34
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B727 186	171	155	107	114		6	20	6	25			09:37
B727 145 151 106 115 6 20 \bullet 45 126 B83 225 131 139 128 25 11 30 13 45 126 B727 263 148 138 128 13 45 5 50 124 B727 213 169 132 128 15 13 45 5 50 124 B727 213 169 132 128 15 15 5 8 80 122 B727 219 183 131 126 \bullet 9 60 12 70 120 199 198 131 126 \bullet 9 60 12 70 120 199 198 131 126 \bullet 9 60 12 70 120 199 199 191 126 \bullet 9 60 12 70 120 199 199 183 131 126 \bullet <	2	B727 187	152	143	107	117	_	80	30	ی – ان	20			09:42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B727 188	145	151	106	115		9	20	-				09:45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B727 189	225	131	139	128	25	11	30	13	45	126		11:04
B727 213 169 132 128 15 55 8 80 122 199 319 131 126 9 60 12 70 120		B727 190	263	148	138	128		13	45	ŝ	50	124		11:07
B727 219 183 131 126 + 9 60 12 70 120		B727 198	213	169	132	128		15	55	80	80	122		11:35
4	*	B727 199	219	183	131	126	*	6	60	12	20	120	*	11:39
))			4										
													-	
											-			

Time (EDT)		08:54	08:58	09:02	09:06	09:10	09:14	09:18	09:22	09:26	09:31	09:35	09:39	10:35	10:39	
	(1972)	9-16										0	0	1		->
Aircraft Heading A		105	125	125	130	132	130					132	130			-
		240	1	240	250	260	255	250	260	250	250	I	1	I	I	ļ
Final Wind Speed	(uqm)	9	1	00	ø	ß	10	00	αο	2	00	1	I	I	ſ	I
	from true N)	250	ļ	250						200	250	240	240	265	265	2.65
Initial Wind Speed	(uduu)	œ	ł	2	S	œ	6	10	9	ŝ	10	4	ε	œ	00	00
Temp.	(°C)	17				_							*	23	23	23
Aircraft Speed	(knots)	150	152	152	144	146	150	158	155	145	145	135	140	138	138	142
Aircraft Aircraft Weight Speed	(1000 Ib)	538	536	534	532	530	528	526	522	520	518	516	514	486	484	482
Aircraft Alt. Abreast of	Tower (ft)	175	178	191	197	163	179	168	187	184	168	206	225	234	224	189
ت بو	Tower (ft)	- 390	-267	-448	-291	-296	-261	-176	-235	- 140	-207	-208	-136	-441	-438	-266
Run Label		B747 1	B747 2	B747 3	B747 4	B747 5	B747 6	B747 7	B747 8	B747 9	B747 10	B747 11	B747 12	B747 13	B747 14	B747
ation		_anding, level flight, 11 engines same bower		1 5							0					
Configuration		Landing, level fli all engines same power														-

Configuration	Run Label	Aircraft Aircraft Displace Alt. ment Abreast from of	Aircraft Alt. Abreast of	Aircraft Weight	Aircraft Aircraft Weight Speed	Temp.	Initial Wind Speed	Initial Wind Angle	Final Wind Speed	Final Final Wind Wind Speed Angle	Aircraft Heading	Month- Day	Time (EDT)
		Tower (ft)	Tower (ft)	(1000 1b)	(knots)	(0°)	(uqm)	from true N)	(uph)	from true N	(mph) true N) mag. N)	(272)	
Landing, level flight, all engines same power	B747 16	-222	178	480	136	24	6	270	ъ	275	130	9-16	10:47
	B747 17	-229	187	478	135		6	280	'n	275	132		10:52
	B747 18	-610	338	460	140		10	270	ŝ	270	225		11:31
2	B747 19	-404	321	458	136		11	275	9	250	226		11:36
	B747 20	-357	334	456	138		2	280	12	290	230		11:42
Takeoff, level flight, all engines same power	B747 21	-286	397	454	152		12	295	12	290	228		11:47
Takeoff, level flight, all engines same power	B747 22	-237	322	452	150		α	290	ъ –	295	225		11:51
Holding, level flight, all engines same power	B7 4 7 23	-279	275	450	190		2	280			222		11:56
Holding, level flight, all engines same power	B747 24	-439	320	448	192	>	2	280		<u>`</u>	220	•	12:01
Landing, level flight, all engines same power	B747 26	-205	185	556	160	25	12	250	2	230	120	6-17	09:56
Landing, level flight, all engines same power	B747 27	-272	186	554	154		6	220	4	270	125		10:00
Takeoff, level flight, all engines same power	B747 28	-305	172	552	160	_	10	220	10	210	125		1 0: 04
Takeoff, level flight, all engines same power	B747 29	-200	175	549	163		6	240	10	210	130		10:08
Holding, level flight, all engines same power	B747 30	-248	177	546	205		10	230	11	230	128		10:11

Configuration	Run Label	Aircraft Displace- ment from		Aircraft Weight	Aircraft Aircraft Weight Speed	Temp.	Initial Wind Speed	Initial Wind Angle	Final Final Wind Wind Speed Angle		Aircraft Heading	Month- Day	Time (EDT)
		Tower (ft)	Tower (ft)	(1000 lb) (knots)	(knots)	(°C)	(mph)			from true N	(mph) true N mag. N)	(1972)	
Holding, level flight, all engines same	B747 31	-268	186	544	205	25	10	220	10	230	130	9-17	10:15
power Landing, level flight, all engines same	B747 32	-185	183	542	142			245	12	240	130		10:20
Jawod	B747 33	-223	172	540	152			230	12	250	128		10:24
	B747 34	-162	164	538	148	-		240	14	240	130		10:27
	B747 35	-276	128	536	145	- 26	13	220	6	220			10:32
	B747 36	-240	176	534	152		10	230	10	250			10:35
	B747 37	-236	179	532	152			210	10	210			10:39
	B747 38	-243	184	530	150			220	ĺ	1			10:43
2	B747 39	-227	194	528	152			220	12	220			10:47
14	B747 40	-279	183	507	145	28	13	220	10	230			11:38
*	B747 41	-240	206	504	145	29	12	230	14	210		_	11:42
Takeoff, level flight, all engines same power	B747 42	-293	144	502	165		12	220	13	240			11:46
	B747 43	-292	158	500	162		12	270	14	230			11:50
Holding, level flight, all engines same power	B747 44	-330	160	498	190		1		12	240			11:56
											4		

				_				
Time (EDT)	12:00	12:04	12:08	12:12	12:16	12:21	12:25	
Month- Day (1972)	9-17			_			*	
	130						*	-
	225	230	240	245	1	240	540	
Final Final Wind Wind Speed Angle (deg from (mph) true N	14	14	12	11	1	10	۲ ۲	
Initial Wind Angle (deg from true N)	230	230	245	240	235	240	1 -	
Initial Wind Speed (mph)	15	10				00	1	
Temp. (°C)	29						►	
Aircraft Speed (knots)	195	148	140	140	140	140	145	
Aircraft Aircraft Weight Speed (1000 lb) (knots)	496	494	492	490	487	484	4 8 2	
Aircraft Alt. Abreast of (ft)	161	143	153	147	169	143	145	
Aircraft Displace- ment from Tower (ft)	-249	-231	-216	-229	-224	-243	-227	
Run Label	B747 45	B747 46	B747 47	B747 48	B747 49	B747 50	51	
Configuration	Holding, level flight, all engines same power	Landing, level flight, all engines same power					*) •)	

Time	(EDT)	08:28	08:32	08:36	08:40	08:45	08:51	08:56	09:01	09:06	09:12	09:22	09:26
Month- Day	(1972)	10-17	10-17	10-17	10-17	10-17	10-17	10-17	10-17	10-17	10-17	10-17	10-17
Aircraft Heading	(deg from mag. N)	132	132	132	132	130	130	128	128	130	130	125	128
Final Wind Angle	(deg from true N)	220	220	220	220	235	235	240	260	250	250	260	270
Final Wind Speed	(uduu)	18	12	10	13	11	13	13	æ	16	15	23	20
Initial Wind Angle	(deg from true N)	220	220	220	220	230	220	240		250		255	
Initial Wind Speed	(udm)	16	13	13	13	10	17	15		14		20	
Temp.	(°c)	14	14	14	140	14	15	15	15	15	15	16	16
Aircraft Speed	(knots)	220	210	200	160	156	155	160	160	158	160	170	175
Aircraft Weight	(1000 1b)	597	595	593	591	589	587	585	581	578	575	569	566
Aircraft Altitude Abreast	(ft)	152	151	177	184	170	184	166	, 158	154	103	121	119
Aircraft Displace- ment from	(ft)	-198	-171	-171	-185	-170	-183	-215	-207	-221	-210	-208	- 197
Run Label		B747 53	B747 54	B747 55	B747 56	B747 57	B747 58	B747 59	B747 60	B747 61	B747 62	B747 63	B747 64
Configuration		Holding, level flight, all engines same power	Holding, level flight, all engines same power	Holding, level flight, all engines same power	Landing, outboard engine toward tower at idle (Vortex 1)	Landing, outboard engine toward tower at idel (Vortex 1)	Landing, outboard engine toward tower at idle (Vortex 1)	Landing, outboard engine away from tower at idle (Vortex 2)	Landing, outboard engine away from tower at idle (Vortex 2)	Landing, outboard engine away from tower at idle (Vortex 2)	Take off, swoop, full power	Take off, swoop, full power	Take off, swoop, full power

Month- Day Time	(1972) (EDT)	10-17 09:31	10-17 10:34	10-17 10:38	10-17 10:42	10-17 10:49	10-17 10:54	10-17 10:59	10-17 11:04	10-17 11:09	10-17 11:14	10-17 11:19	10-17 11:24
Aircraft M Heading	(deg from mag. N) (1	305 10	220 10	220 10	220 10	222 10	222 10	223 10	226 10	230 10	225 10	225 10	352 10
Final Wind Angle	8		280		280	260	270	270	270	270	270	280	
Final Wind Speed	(uph)		20		17	20	18	24	27	24	19	25	
Initial Wind Angle	(deg from true N)		260	280	270	270	270	280	270	260	280	270	
Initial Wind Speed	(uduu)		24	20	21	20	22	20	23	26	18	20	
Temp.	(°C)	16	17	17	17	17	18	18	18	18	18	18	18
Aircraft Speed	(knots)	310	250	250	250	150	155	145	155	150	150	205	300
Aircraft Weight	(10001)	563	532	530	528	525	523	521	519	517	513	510	507
Aircraft Altitude Abreast	di lower (ft)	172	220	259	213	229	204	216	206	238	216	224	136
Aircraft Displace- ment from	(ft)	-440	-334	-449	-439	-404	-428	-416	- 482	- 440	-402	-394	-354
Run Label		B747 65	B747 66	B747 67	B747 68	B747 69	B747 70	B747 71	B747 72	B747 73	B747 74	B747 75	B747 76
Configuration		Holding, level flight, all engines same power	Landing, outboard engine away from tower at idle (Vortex I	Landing, outboard engine away from tower at idle (Vortex 2)	Landing, outboard engine toward tower at idle (Vortex 1)	Landing, outboard engine away from tower at idle (Vortex 2)	Landing, outboard engine away from tower at idle (Vortex 2)	Landing, outboard engine toward tower at idle (Vortex I)	Holding, level flight, all engines same power	Holding, level flight, all engines same power			

Configuration	Run Label	₹ Ã È	Aircraft Altitude Abreast	Aircraft Weight	Aircraft Speed	Temp.	Initial Wind Speed	Initial Wind Angle	Final Wind Speed	Final Wind Angle	Aircraft Heading	Month- Day	Time
		10W6F (ft)	of lower (ft)	(10001)	(knots)	(°c)		(deg from true N)	(uđu)	(deg from true N)	(deg from mag. N)	(1972)	(EDT)
Holding, level flight, all engines same power	B707 1	232	197	263	215	4	ę	10	ę	10	135	10-18	07:49
Holding, level flight all engines same power	B707 2	286	211	262	215	4	¢	10	ę	10	135	10-18	07:52
Holding, level flight, all engines same power	B707 3	245	208	261	215	4	ę	10	6	10	130	10-18	07:56
Landing, outboard engine away from tower at idle (Vortex 2)	B707 4	273	204	261	145	5	2		ъ	10	130	10-18	07:59
Landing, outboard engine away from tower at idel (Vortex 2)	B707 5	261	208	259	147	υ	α		æ		130	10-18	08:03
Landing, outboard engine away from tower at idle (Vortex 2)	B707 6	269	215	258	145	'n	ę	ъ	7	ŝ	130	10-18	08:07
Landing, outboard engine toward tower at idle (Vortex 1)	B707 7	243	219	257	145	чî	£	10			130	10-18	08:12
Landing, outboard engine toward tower at idle (Vortex 1)	B707 8	229	204	255	146	Ŋ	œ		2		123	10-18	08:16
Landing, outboard engine toward tower at idle (Vortex 1)	B707 9	234	213	253	145	ч	2		6		126	10-18	08:21
Take off, swoop, full power	B707 10	292	225	252	170	ŝ			6		130	10-18	08:25
Take off, swoop, full power	B707 11	271	211	251	165	ĥ	ę	355	4	10	130	10-18	08:29
Take off, swoop, full power	B707 12	277	192	250	160	ŝ	ę	15			130	10-18	08:32

Ri	Run I Label n	Aircraft Displace- ment from	Aircraft Altitude Abreast	Aircraft Weight	Aircraft Speed	Temp.	Initial Wind Speed	Initial Wind Angle	Final Wind Speed	Final Wind Angle	Aircraft Heading	Month- Day	Time
		(ft)	or rower (ft)	(10001)	(knots)	(0 ⁰)	(uph)	(deg from true N)	(nqm)	(deg from true N)	(deg from mag. N)	(1972)	(EDT)
B707 13	2	257	215	237	220	ę	ŝ	20	6	350	130	10-18	09:33
B70 14	07 4	288	231	236	225	6	9	20	6		130	10-18	09:37
B70 15	07 5	248	195	235	220	ę	œ		80	10	130	10-18	09:41
B7(66	275	221	234	145	é	10		2	10	130	10-18	09:45
B70 17	70	271	191	233	145	6	10		80		130	10-18	09:50
B70 18	07 8	275	209	231	209	6	80		6		130	10-18	09:54
B7(07 9	249	196	230	145	9	6		8		128	10-18	09:57
B7(2(0	252	156	229	145	9	Ø		80		130	10-18	10:02
	B707 21	278	150	227	145	Q,	œ				127	10-18	10:06
B7 2	07 2	277	182	226	170	7	4		6	350	130	10-18	10:10
B7 2	07 3	269	161	225	170	2	80	10	6		130	10-18	10:15
	B707 24	270	158	223	172	7	9	20			130	10-18	10:22

 Configuration 	Run Label	Aircraft Displace- ment from	Aircraft Altitude Abreast	Aircraft Weight	Aircraft Speed	Temp.	Initial Wind Speed	Initial Wind Angle	Final Wind Speed	Final Wind Angle	Aircraft Heading	Month- Day	Time
		(ft)	(ft)	(1000 1b)	(knots)	(°c)		(deg from true N)		(deg from true N)	(deg from mag. N)	(1972)	(EDT)
Holding, level flight, all engines same power	B707 25	267	181	210	205	11	9		4		130	10-18	11:16
Holding, level flight, all engines same power	B707 26	269	198	209	205	11	ę	2	80	10	130	10-18	11:21
Holding, level flight, all engines same power	B707 27	286	206	207	202	11	4		5		130	10-18	11:24
Holding, level flight, all engines same power	B707 28	273	210	207	200	11	4		6	20	130	10-18	11:28
Holding, level flight, all engines same power	B707 29	283	194	206	202	11	6	15	80	40	130	10-18	11:32
Holding, level flight, all engines same power	B707 30	272	192	206	202	11	°	40	4	60	130	10-18	11:36
Take off, level flight, all engines same power	B707 31	269	187	205	138	6	2	60	5		125	10-18	11:41
Take off, level flight, all engines same power	B707 32	275	199	204	145	9	5				120	10-18	11:45
Holding, level flight, all engines same power	B707 33	-412	100	203	320	6					310	10-18	11:50

Configuration	Run Label	Aircraft Displace- ment from Tower (ft)	Aircraft Altitude Abreast of Tower (ft)	Aircraft Weight (1000 lb)	Aircraft Speed (knots)	Temp. (°C)	Initial Wind Speed (mph)	Initial Wind Angle (deg from true N)	Final Wind Speed (mph)	Final Wind Angle (deg from true N)	Aircraft Heading (deg from mag. N)	Month- Day (1972)	Time (EST)
Holding, level flight, all engines same power	B707 34	257	191	264	225	9	2				130	11-1	07:36
Holding, level flight, all engines same power	B707 35	303	205	263	218	ę	9		6	350	130	11-1	07:40
Landing, level flight, all engines same power	B707 36	276	212	262	150	6	2		7		126	1-11	07:44
Landing, level flight, all engines same power	B707 37	294	197	261	148	5	2	350			128	11-1	07:49
Landing, outboard engine away from tower at idle (Vortex 2)	B707 38	276	204	258	148	IJ	ι.Ω	310			130	11-1	07:58
Landing, outboard engine away from tower at idle (Vortex 2)	B707 39	278	229	256	146	6			7		130	11-1	08:08
Landing, outboard engine toward tower at idle (Vortex 1)	B707 40	298	218	254	148	5	6	330	80		126	11-1	08:07
Landing, outboard engine toward tower at idle (Vortex 1)	B707 41	276	216	250	143	ъ			2	350	128	11-1	08:12
Takeoff, level flight, all engines same power	B707 42	241	200	250	145	л С	7		ß		130	11-1	08:18
Take off, level flight, all engines same power	B707 43	269	219	249	148	ŝ	9		9		130	11-1	08:23
Take off, swoop, full power	B707 44	2.63	145	248	I 58	9					130	11-1	08:27
Take off, swoop, full power	B707 45	250	180	246	158	5	2		ŝ		130	11-1	08:32
Holding, level flight, all engines same power	B707 46	251	240	230	218	9	2		4		128	11-1	09:31
Holding, level flight, all engines same power	B707 47	250	190	229	210	ŝ	5		2		126	11-1	09:36

Landing, level flight, all engines same power Landing, level flight, all engines same power 49 Landing, outboard at idle (Vortex 2) Landing, outboard at idle (Vortex 2) Landing, outboard boord	Tower	Abreast	Weight	Aircraft Speed	Temp.	Wind Wind	Initial Wind	Final Wind	Final Wind	Aircraft Heading	Month- Day	Time
B707 48 B707 B707 B707 50 B707	(tf)	of Tower (ft)	(1000 1b)	(knots)	(°c)	Speed (mph)	Angle (deg from true N)	opeea (mph)	Angle (deg from true N)	(deg from mag. N)	(1972)	(EST)
B7 B7 B7 B7 B7 B7 B7	277	215	228	137	ŝ	2		4	350	128	1-11	09:40
E E E	272	206	227	134	9	4				126	11-1	09:44
B	240	201	226	133	2	27				128	11-1	09:48
	278	219	223	135	Q,	ε		4		130	11-1	09:58
B707 52	256	219	221	134	\$			4		127	11-1	10:03
B707 53	239	212	219	131	9	7		ε		126	11-1	10:07
Take off, level flight, B707 all engines same power 54	285	184	218	135	7	2				127	11-1	10:12
Take off, level flight,B707all engines same power55	270	213	216	134	9	4	340) ()	127	11-1	10:17
B707 56	285	164	215	132	2					1264	11-1	10:23
B707 57	281	162	213	135	9	ŝ		12		128	11-1	10:27
Holding, level flight, B707 all engines same power 58	271	177	202	198	9	4	340	ε		128	11-1	11:12
Holding, level flight, B707 allengines same power 59	293	206	201	I85	ę					130	1-11	11:16
Landing, level flight, B707 all engines same power 60	340	206	200	131	9			4		128	11-1	11:20
Landing, level flight, B707 all engines same power 61	273	220	199	124	2					130	11-1	11:25
Holding, level flight, B707 all engines same power 63	250	150	192	290	9					130	11-1	11:33

Appendix B

PROBABLE STABILITY CONDITIONS PREVALENT DURING SELECTED NAFEC FLYBYS AT ATLANTIC CITY, N.J.

Near neutral atmospheric buoyancy or stability conditions are likely to prevail 80% of the time at any given station. At night, during and very shortly after sunrise, an inversion layer usually exists in the surface boundary layer (region of shear stress almost constant with height). Thus, the near neutral conditions would tend toward the stable state during this period. This effect is due to a massive heat exchange by horizontal convection in the upper atmosphere as opposed to a negative to very small positive temperature rise in the surface boundary region. In its relatively non-dynamic state, the surface boundary layer will only experience a large temperature rise when the surface itself is well exposed to an appreciable solar radiation flux. Shortly after sunrise the neutral conditions will tend more toward the unstable state due to the surface heating and the resultant vertical convective processes. Heat exchange at higher altitudes is mostly a function of mass exchange due to horizontal pressure gradients and the earth's rotation and are relatively independent of the surface characteristics when the region of interest is confined to such a small scale as an airport. Radiosonde data taken at these higher altitudes will exhibit lapse rates which somewhat arbitrarily reverse signs and cover a somewhat larger variation in magnitudes.

In Lissaman, etal.(Ref. 5), the Pasquill classes were categorized in terms of various lapse rates. In addition, a qualitative description of meteorological conditions likely to be present during the various Pasquill defined degrees of stability are given.

The tables presented in this appendix define the classes which would exist under the Pasquill criteria during the periods of interest (if the necessary data are available). The classes are suggested for: (1) the general meteorological conditions (from NOAA surface weather tables); (2) the lapse rate from 23 to 140 feet (from NAFEC tower data); (3) the lapse rate from approximately 200 to approximately 4000 feet (from radiosonde data); and (4) the lapse rate from 140 to approximately 200 feet (from NAFEC tower data in conjunction with the radiosonde data). General meteorological conditions indicate that the expected stabilities for a given time of day were present in each case with the possible exception of the unusual trend of 17 October 1972. The tendency of the buoyancy conditions to remain more nearly neutral throughout the morning than normal may be explained by the air mass modification created by the impending frontal passage. The sharp temperature contrasts of 17 October and 18 October support this argument.

The lapse rates from 23 to 140 feet appear to be anomalous in magnitude and, in some cases, sign for all periods of interest. This phenomenon is possibly due to instrument error or high degree of inaccuracy.

As discussed previously, the lapse rates from approximately 200 to approximately 4000 feet do not give a true picture of stability. Even if linear trends of temperature change with height were exhibited these trends would most probably be inapplicable to the vertical region of interest.

Although the lapse rates between 140 feet and approximately 200 feet would be of value in establishing the conditions applicable to the vortex problem, the values computed are unrealistic due to the possible inaccuracy of the tower data and the fact that the lowest level radiosonde measurement is unreliable most of the time.

Date (1973)	Time (EDT)	General Meteorological Conditions	Lapse Rate (23 to 140 ft)	Lapse Rate (~200 to ~4000 ft)	Lapse Rate (140 to ~200 ft)
8-19	~11:00	Moderate insolation during this daytime period. Surface winds were approximately 5.0 m/s at 340 deg from true North. This implies Pasquill class C or slightly unstable.	-0.7 ^o C/100 ft ⇒ Pasquill class A or extremely unstable		
8-22	~13:00	Strong insolation during this daytime period. Surface winds were approximately 4.5 m/s at 120 deg from true North. This implies Pasquill class B or moderately unstable	-0.6°C/100 ft ⇒ Pasquill class A or extremely unstable		
	~14:00	Strong insolation during this daytime period. Surface winds were approximately 5.0 m/s at 160 deg from true North. This implies Pasquill class B to C or moderately to slightly unstable.	-1.2°C/100 ff ⇒ Pasquil class A or extremely unstable		
9-12	~12:00	Slight insolation during this daytime period. Surface winds were approximately 2.5 m/s at 250 deg from true North. This implies Pasquill class C or slightly unstable.	-0.3 ^o C/100 ft ⇒ Pasquill class D or neutral		
9-14	~07:00	Moderate insolation during this daytime period. Surface winds were approximately 5.0 m/s^{-1} at 250 deg from true North. This implies Pasquill class C or slightly unstable. Hazy conditions suggest ground fog dissipation in progress.	0.2 ⁰ C/100 ft ⇒ Pasquill class E or slightly stable		
	~08:00	Moderate insolation during this daytime period. Surface winds were approximately 5.0 m/s at 250 deg from true North. This implies Pasquill class C or slightly unstable. Hazy conditions suggest ground fog dissipation remains in progress.	-0.6°C/100 ff ⇒ Pasquil class A or extremely unstable		
	~09:00	Moderate insolation during this daytime period. Surface winds were approximately 5.0 m/s at 250 deg from true North. This implies Pasquill class C or slightly unstable. Hazy conditions still exist suggesting slow ground fog dissipation thus neutral conditions are likely.	-0.3°C/100 ft ⇒ Pasquill class D or neutral		

Lapse Rate (140 to ~200 ft)					<u>`</u>	
Lapse Rate (~200 to ~4000 ft)						E
Lapse Rate (23 to 140 ft)	-8.3°C/100 ft ⇒ Pasquill class A or extremely unstable	0.2 [°] C/100 ft ⇒ Pasquill class E or slightly stable	-1.2 ⁰ C/100 ff ⇒ Pasquill class A or extremely unstable	-0.5 ⁰ C/100 ft ⇒ Pasquill class B or moderately unstable	0.1 [°] C/100 ft ⇒ Pasquill class E or slightly stable	-1.4°C/100 ft ⇒ Pasquill class A or extremely unstable
General Meteorological Conditions	Slight insolation during this daytime period. Surface winds were approximately 7.0 m/s at 260 deg from true North. This implies Pasquill class D or neutral conditions. Hazy conditions are prevalent and this being the case at this time of day, the neutral argument is strongly supported.	Slight insolation during this daytime period. Surface winds were approximately 4.0 m/s at 250 deg from true North. This implies Pasquill class C or slightly unstable. Hazy conditions suggest ground fog dissipation is in progress.	Moderate insolation during this daytime period. Surface winds were approximately 3.0 m/s at 290 deg from true North. This implies Pasquill class B or moderately unstable conditions.	Strong insolation during this daytime period. Surface winds were approximately 4.0 m/s at 310 deg from true North. This implies Pasquill class B or moderately unstable conditions.	Strong insolation during this daytime period. Surface winds were approximately 5.0 m/s at 240 deg from true North. This implies Pasquill class B to C or moderately to slightly unstable. Hazy conditions suggest ground fog dissipation is in progress.	Strong insolation during this daytime period. Surface winds were approximately 6.0 m/s at 230 deg from true North. This implies Pasquill class C or slightly unstable. Hazy conditions present at this time may be indi- cative of recent frontal passage in conjunction with increased sea level pressure and tem- perature thus building particulate condensates toward the surface with the increased evaporation.
Time (EDT)	~11:30	00:60~	~11:00	~12:00	~10:00	~ 12:00
Date (1972)	9-14	9-16			9-17	

B-4

Lapse Rate (140 to ~200 ft)				ě.		
Lapse Rate (~200 to ~4000 ft)	-0.2°C/100 ft ⇒ Pasquill class D or neutral conditions	-0.1°C/100 ft ⇒ Pasquill class E or slightly stable	-0.1°C/100 ft ⇒ Pasquill class E or slightly stable	-0.2°C/100 ft ⇒ Pasquill class D or neutral conditions	-0.2°C/100 ft ⇒ Pasquill class D or neutral conditions	
Lapse Rate (23 to 140 ft)				-0.7 ^o C/100 ft => Pasquill class A or extremely unstable		
General Meteorological Conditions	Less than 3/8 cloud cover during this nighttime period. Surface winds were approximately 5.5 m/s at 240 deg from true North. This implies Pasquill class D to E or neutral to slightly stable. Moderate ground fog present supports slightly stable argument.	Strong insolation during this daytime period. Surface winds were approximately 5.0 m/s at 240 deg from true North. This implies Pasquill class B to C or moderately to slightly unstable. Moderate ground fog present. Shortly after sunrise possible neutral conditions exist.	Moderate insolation during this daytime period. Surface winds were approximately $6 m/s$ at 240 deg from true North. This implies Pasquill class D to C or neutral to slightly un- stable. Moderate ground fog still present.	Moderate insolation during this daytime period. Surface winds were approximately 5.5 m/s at 240 deg from true North. This implies Pasquill class D to C or neutral to slightly un- stable. Hazy conditions indicate ground fog is breaking up and therefore bouyancy tends toward unstable.	Moderate isolation during this daytime period. Surface winds were approximately $6 m/s$ at 260 deg from true North. This implies Pasquill class C to D or slightly unstable to neutral. Fog has completely dissipated.	Moderate insolation during this daytime period. Surface winds were approximately 8 m/s at 270 deg from true North. This implies Pasquill class D or neutral.
Time (EDT)	~04:00	~07:00	~ 08:00	~09:00	~10:00	~11:00
Date (1972)	10-17		(a)		i and	

B-5

Lapse Rate (140 to ~200 ft)					-0.6°C/100 ft ⇒ Pasquill class A or extremely unstable	-1.5°C/100 ft ⇒ Pasquill class A or extremely unstable	-3.2°C/100 ft ⇒ Pasquill class A or extremely unstable	-2.5°C/100 ft ⇒ Pasquill class A or extremely unstable	
Lapse Rate (~200 to ~4000 ft)		-0.2°C/100 ft ⇒ Pasquill class D or neutral conditions		-0.1 ⁰ C/100 ft ⇒ Pasquill class E or slightly stable	-0.2 ⁰ C/100 ft ⇒ Pasquill class D or neutral	-0.3 ^o C/100 ft ⇒ Pasquill class D or neutral	0.9°C/100 ft ⇒ Pasquill class F or moderately stable	-0.3°C/100 ft ⇒ Pasquill class D or neutral	
Lapse Rate (23 to 140 ft)	-		-0.2 ^o C/100 ft ⇒ Pasquill class D or neutral		-0.5°C/100 ft ⇒ Pasquill class B or moderately unstable	-0.6°C/100 ft ⇒ Pasquill class A or extřemely unstable	-0.5 °C/100 ft ⇒ Pasquill class B or moderately unstable moderately stable	-1.0°C/100 ft ⇒ Pasquill class A or extremely unstable	
General Meteorological Conditions	Less than 3/8 cloud cover during this nighttime period. Surface winds were approximately 2.5 m/s from true North. This implies Pasquill class F or moderately stable.	Slight insolation during this daytime period. Surface winds were approximately 3 m/s from true North. This implies Pasquill class B or moderately unstable. Shortly after sun- rise possible neutral conditions exist.	Slight insolation during this daytime period. Surface winds were approximately 2 m/s at 10 deg from true North. This implies Pasquill class B or moderately unstable.	Slight insolation during this daytime period. Surface winds were approximately 4 m/s from true North. This implies Pasquill class C or slightly unstable.	Slight insolation during this daytime period. Surface winds were approximately 3 m/s from true North. This implies Pasquill class C or slightly unstable.	Slight insolation during this daytime period. Surface winds were approximately 2.5 m/s at 310 deg from true North. This implies Pasquill class C or slightly unstable.	Slight insolation during this daytime period. No surface winds. This implies Pasquill class B or moderately unstable.	Slight insolation during this daytime period. No surface winds. This implies Pasquill class B or moderately unstable.	
Time (EDT)	~04:00	~07:00	~08:00	~09:00	~10:00	~14:00	~15:00	⊷1 6: 00	
Date (1972)	10-18						8		

в-6

Appendix C

DESCRIPTION OF OUTPUT PLOTS OF WAKE VORTEX TRANSPORT COMPUTER PROGRAM

Following is a brief description of the output plots (SC-4020) for the wake vortex transport computer program. The output consists of 14 pages of plots shown on pages C-3 through C-16. The first page represents a summary of input flags as used for analysis of Run 4 on 18 October 1972, and also the first portion of the wind field input description. All input flags are defined via comment cards in the computer program and are given in Appendix D for easy reference. The wind field is defined by specifying the number of altitudes to be used in the curve fitting algorithm followed by a table defining the wind speed for both the horizontal and vertical versus altitude. This table is concluded on the second page. Next is the specified reference speed and altitude along with the exponent defining the power law curve fit required to represent the wind field over a continuous height. Following this is a temperature-altitude table for stability and density calculations. Page C-5 defines the variables for the temperature-altitude curve fit, the wind shear model parameters, the buoyancy model parameters, and a description of the ground wind array and sensor type. Page C-6 lists aircraft information required for the transport calculations and some of the basic quantities calculated in the program.

The display of the vortex tracks is initiated in the plot on page C-7. This plot is a cross sectional vortex track of altitude versus lateral distance referenced to the centerline of the aircraft flight path. Each plotting symbol indicates a time as defined by the user specified time increment. Page C-8 represents a cross sectional vortex track corresponding to the desired experimental condition. The current setup represents the NAFEC conditions with the lateral distance coordinate referenced to the NAFEC tower. The plotting characters initiating at the simulated aircraft are predicted values with the asterisks and Xs representing the starboard and port vortices, respectively. The measured vortex position as determined from the photographs are shown superimposed on the predicted tracks with the S and P corresponding to the starboard and port vortices, respectively. The solid line represents constant time lines and can be calibrated by the caption at the top of the plot. Page C-9 is a time versus altitude track comparing predicted and photographic measurement. In the case for no wind shear, equal circulation and level flight, the starboard and port predictive tracks are identical as indicated by the double plotting character. Here again the S and P represent starboard and port vortex position obtained by measurement. Next is the reduced ground wind track comparing predicted and measured vortex positions. The lines represent predicted vortex position versus time with the S and P referring to photographic measurement and R and L referring to ground wind measurement of the right and left vortex, respectively. Page C-11 is the induced velocity (predicted) as a function of time for each ground wind sensor including a specified sensor response. The peaks are the predictive points shown in the previous plot. The remaining plots relate to either the wind field or the atmospheric characterization.

The plot on page C-12 is the measured (symbols) wind velocity for the five tower levels and the line through the data is the least square power law representation of the wind profile. Page C-13 shows the variation of wind direction with altitude for both the measured (symbols) and the least square quadratic representation (solid line) of the data. Pages C-14 and C-15 show the component wind profile for the lateral and longitudinal directions, respectively, for both the measured data and that calculated from the least square information of the previous two plots. The final plot (page C-16) represents temperature, pressure and density profiles for the altitude range of interest computed from the temperature data measured on the tower and the recorded surface pressure measured by NOAA,

8707	WIND	PROFILE
	8707	8707 WINC

- 18 î.

			NON A DIDI			
SINP	υT					
ISIM	=	+1				
STIM	E =	.00000000E+00				
FTIM	E =	.16000000E+03				
DTIM	E =	+20000000E+01				
JPRI	NT =	+1				
SPEE	c =	21250000E+03				
WEIG	HT =	.24700000E+06				
WSFA	N =	.14580000E+03				
IFLO	T1 =	+1				
IPLO	T2 =	+3				
IFUN	CH =	+1				
LINE	=	+1				
DTLI	NE =	.6000000E+01				
ISCA	LE =	+1				
YR	=	.40000000E+03				
YL	=	~.6000000E+03				
21		-25000000E+03				
FHIN	=	3000000E+02				
FHA)	=	.3000000E+02				
			2		23	
SENC	<u>,</u>					
\$ VOF	T					
VOR	5	.0000000E+00				
1510	HT =	+0				
SENC						
\$111	IDS				. ·	
JWI	ID =	+3				
SWI	IDT =	.00000000E+00				
VIN	D =	.0000000E+00				
NW	=	+5				
ALT	=	.23000000E+02,	.450000008	+02,	.70000000E+02,	.10000000E+03,
		.14000000E+03,	.200000008	+03,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000	+00,	.00000000E+00.	.00000000E+00,
		.00000000E+00,	.00000000E	+00,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000E	+00,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	.000000008	+00,	.00000000E+00,	.00000000E+00;
		.0000000E+00,		+00,	.000000002+00,	.00000000E+00,
		.00000000E+00,		+00		
WSP	ED =	.53000000E+01,		+01,	.6600000E+01,	.10000000E+02,
		.13000000E+02,		+02.	.0000000E+00,	.000000000000.
		.00000000E+00,			.000000000000000	.0000000000.
			n neessaanna 1			

		.00000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00,
		•00000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00,
		.0000000E+00,	+0000000E+00		
WDIREC	=	.31770000E+03,	.33240000E+03,	.35690000E+03,	.33080000E+03,
		-12100000E+02,	.12100000E+02,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000E+00,	.00000005E+00,	.00000000E+00,
		.00000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00	245	
WSV	=	.0000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00;	.0000000E+00,	.00000005E+00,
		.00000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.0000000E+00,	.00000000E+00,	.0000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000E+00		
ALTR	=	-23000000E+02			3
WSPR	=	+00000000E+00			
CPOWER	=	-27000000E+00			
NFOLY	=	+2			
COEF	=	.00000000E+00,	.0000000E+00,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	-00000000E+00,	.00000000E+00,	.00000000E+00,
		•0000000E+00			
PRESSG	=	•10263000E+04			
JTEMP	=	+2			
NA	z	+5	0		
ALTIT	=	-23000000E+02,	.45000000E+02,	.70000000E+02,	+10000000E+03;
		-14000000E+03;	·20000000E+04,	.20000000E+04,	.20000000E+04,
		•20000000E+04,	.20000000E+04,	.20000000E+04,	-20000000E+04; 3
		.20000000E+04,	.20000000E+04,	.20000000E+04,	.20000000E+04,
		•20000000E+04,	.20000000E+04,	.20000000E+04,	.20000000E+04,
37		-20000000E+04,	.20000000E+04,	.20000000E+04,	.20000000E+04,
		·20000000E+04,	.2000000E+04,	.20000000E+04,	-20000000E+04,
		.20000000E+04,	.20000000E+04	E.	
TEMP	=	.29000000E+01,	.28000000E+01,	.29000000E+01,	.2800000CE+01,
		.27000000E+01,	.20000000E+02,	.20000000E+02,	-20000000E+02,
		•20000000E+02,	.20000000E+02,	.20000000E+02,	.2000000E+02,
		.20000000E+02,	.20000000E+02,	.2000000E+02,	.20000000E+02,
		.20000000E+02,	.200000000000000	.20000000E+02,	.20000000E+02,

		·200000056E+02,	.20000000E+02,	.20000000E+02,	·20000005E+02,
		.20000000E+02,	.20000000E+02,	.20000000E+02,	.20000000E+02,
		.20000000E+02,	.20000000E+02		
NPOLYT		+1			
COEFT	R.	.00000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00,
		.00000000E+00,	.00000000000000000000000000000000000000	.000000000000000	.00000000E+00,
		.00000000E+90			
JFOTEN	=	+1			
\$END					
\$ SHEAR					
NROWS	5	+0	· .		ē.
NCOL S	=	*1			
HEIGHT	2	.0000000E+00			a
WIDTH	=	·00000000E+00			
F	=	.0000000E+00,	.00000000E+00,	.00000000E+00,	.00000000E+00
\$END					
\$BUOY					5
SMIX		.00000000E+00		<u></u>	
ZCHECK	=	.5000000E+03	2		
3ê					
SEND					
SENSOR		22			
KSEN	=	+0			
NSEN	=	+12		.35000000E+03,	.25000000E+03,
YSEN	=	.55000000E+03,	.45000000E+03,	5000000E+02.	15000000E+03,
		.15000000E+03,	.50000000E+02, 35000000E+03,	45000000E+03,	55000000E+03,
		25000000E+03,	.00000000E+00	.00000000E+00,	+00000000E+00
	2	.00000000E+00,	.60000000E+01,	.60000000E+01,	.60000000E+01,
ZSEN		.60000000E+01,	.600000002+01,	.60000000E+01,	.60000000E+01,
		.60000000E+01,	.60000000E+01,	.60000000E+01,	.60000000E+01,
		.60000000E+01,	.0000000000000000	.00000000E+00,	.00000000E+00
		.27000000E+03,	.27000000E+03,	.27000000E+03,	.27000000E+03,
PHI	ă.	.270000002+03,	.27000000E+03,	.27000000E+03,	.27000000E+03,
		.27000000E+03,	.27000000E+03,	.27000000E+03,	.27000000E+03,
	Ξ'n.	.27000000E+03,	.27000000E+03,	.27000000E+03,	.27000000E+03
THETA		.90000000E+02,	.90000000E+02,	.90000000E+02,	.9000000E+02,
THETA	2	.90000000E+02,	.90000000E+02,	.90000000E+02,	.90000000E+02,
		.90000000E+02,		.90000000E+02,	.90000000E+02,
		.90000000E+02,	.90000000E+02,		.90000000E+02
18548		+0,	+0,	**	+0,
ISENS	=	+3,	+3,	+3,	+3,
		+3,	+3,	+3,	+3,
		+3.	+3,	+3,	+3
	8			0.550	

SEND

4

RUN DATA CARD

CONFIGURATION LANDING, OUTBOARD ENGINE AWAY FROM TOWER AT IDLE AIRCRAFT TYPE IS BTOT RUN NUMBER 4 AIRCRAFT DISPLACEMENT FROM TOWER 273 FT AIRCRAFT ALTITUDE ABREAST OF TOWER 254 FT AIRCRAFT WEIGHT 261000. FOUNDS AIRSFEED 244.9 FT/SEC TEMPERATURE 5 DEGREES C (NOT USED) INITIAL WIND SPEED 7 MPH (NOT USED) INITIAL WIND ANGLE D DEGREES TRUE (NOT USED) FINAL WIND SPEED 5 MPH (NOT USED) FINAL WIND ANGLE 10 DEGREES TRUE (NOT USED) AIRCRAFT HEADING 130 DEGREES MAGNETIC HONTH 10 CAY 18 HOUR 7 HINUTE 59 LOCAL TIME

-UTFUT

SPEED	=	24490500E+03
WEIGHT	=	.26100000E+06
WSPAN	=	.14200000E+03

\$END

JENG					
\$WLOG					
WSPR	=	.40058082E+01			
CPOWER	=	.62449599E+00			
COEF	=	44856098E+02,	.32959656E+00,	.25889222E-03,	.12560241E+02,
		.00000000E+00,	.00000000000000000000000000000000000000	.00000000E+00,	.00000000E+00.
		.00000000E+00		8	

\$END

GANMA IN FT**2/SEC = 3.84819925+03 EDDY VISCOSITY IN FT**2/SEC = 5.06608792-01 TEMPERATURE IN RANKINE = 4.96429741+02 DENSITY IN SLUGS/FT**3 = 2.48317368-03 ACOUSTIC VELOCITY IN FT/SEC = 1.09220007+03 STABILITY IN 1/SEC**2 = 0.00000000 INITIAL PARAMETER (DIMENSIONLESS) = 0.00000000 FIRST TIME FOR S IS 10

G-6

RUN 4 8707

RUN 4 8707

.

RUN 4 8707

Appendix D

DESCRIPTION OF INPUT REQUIREMENTS FOR LOCKHEED WAKE VORTEX TRANSPORT COMPUTER PROGRAM

×

This Appendix presents a summary of input namelist and input flag requirements for using the Lockheed Wake Vortex transport computer program.

.

14

-2E

2,2
Ζ.
8 4
G
ROR
CC -
Δ.
-
►.
2
L.L
Ξ.
Lu -
ц.
لعا
L.
z
Ö
-
لبا
1
THE

THE ONE ELEMENT PROGRAM		TITLE CARD 72 COLUMNS OF COMMENT	(IF FIRST & COLUMNS ARE BLANK; PROGRAM TERMINATES)		AIRCRAFT CARD CHODSE STANDARD AIRCRAFT WITH FIRST & COLUMNS	(LEFT JUSTIFIED)	THE CHOICES ARE 8747 8707 8727 ACID DC9 DC8 CV880	LICIT C5A	ALL BLANKS INDICATES AIRCRAFT FROM PREVIDUS CASE	HILL BE USED	
υυu	U	U	U	υ	U	U	U	U	U	U	U
* * * - N M	* 1	ۍ ۲	• 9	7+	• 8	+ 0-	10+	11+	12+	13+	***

PHOTOGRAPHIC INPUT IS NOT USED TO DETERMINE YORTEX STARTING POSITION THE FIRST PHOTOGRAPHIC INPUT CARD IS USED TO DETERMINE VORTEX STARTING POSITION VORTEX ALTITUDE ABOVE GROUND ISIGHT = 0 ISIGHT # 1 NAMELIST (VORT) FLAG ISIGHT VOR U ÷2+ + 19 • 9 9 67+ • 8 • 10+ .

|--|

	NAMELIST (SHEAR)		NROWS NUMBER OF ROWS OF VORTICES FOR SHEAR	IF NROWS = 0 NO SHEAR IS ASSUMED	NCOLS NUMBER OF COLUMNS OF VORTICES FOR		HEIGHT HEIGHT OF UPPER MOST ROW OF SWEAR		F(4) FRACTION OF VORTICITY IN FACH ROW OF VORT	
			NR		U U U		HE	W I C	F (
U	U	U	U	U	U	U	u	U	U	u
+ 1 1	+5	• 9 1	117.	118.	+61	-02	21+	23+	• 63	+ 11 -

s CES ICES

			SAIX AIXING PARAFETER	SMIX POSITIVE INDICATES TOMBACHIS BUDYANCY MODE	SMLX = #1. INDICATES SCORER AND DAVENPORTES		SHIX = 42. INDICATES ADIABATIC COMPRESSION	(#11: NO HIXING) AS THE	BUOYANGY MOPEL	ZCHECK ELEVATION CUTOFF POINT FOR BUBYANCY	
U	ų	U	u	u	U	U	U	Ű	U	U	U
125+	1260	127.	128+	129+	130+	131+	132+	1330	***	135+	136+

¥.

÷

	NAMFI TST FATNERS		FLAG			KAEN E I INDITIATEN BORDERED IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	OF SENSORS MAXIMUM	Y POSITION OF GENERAL	Z POSTTION OF SENSOR	ORTERTATION OF SENADO		DRIENTATION AN SAMADA ANALA LUCKAWISE IN XY PLANE	FLAG FOR SENAD				ISENS 7 2 DUAL TOTAL HEAD PROBE	n
			KSEN				NSEN	YSEN(16	ZSEN(16)	PHI (16)		THETA(16)	ISENS(16)					
U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
137+	138+	139+	+0+1	141+	142+	• • • • •	***	145+	146+	147.	148+	149+	150+	151+	152.	153+	154+	155+

Appendix E

SUMMARY OF LINE PRINTER OUTPUT OF LOCKHEED WAKE VORTEX TRANSPORT COMPUTER PROGRAM

LINE PRINTER OUTPUT

Print out on Page E-7

(1) Title from title card

Standard aircraft chosen; not printed if standard aircraft not chosen 2

(3) Namelist INPUT

The printing of variable STIME does not reflect the effect of the selection of first Photographic Input Card used to determine the vortex starting position.

The printing of variables SPEED, WEIGHT and WSPAN reflects the effect of $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ but does not reflect the overriding of the Run Data Card, if selected.

(4) Namelist VORT

(5) Namelist WINDS

Print out on Page E-8

(5) Continuation of Namelist WINDS

The printing of variables ALTR, WSPR, CPOWER, COEF and COEFT does not reflect the least squares computations.

6) Namelist SHEAR

(7) Namelist BUOY

Print out on Page E-9

(8) Namelist SENSOR

- (49) Altitude in feet of port vortex
- (50) Horizontal position in feet of starboard vortex relative to tower
- 51) Same as (47)
- (52) Horizontal position in feet of port vortex relative to tower

(53) Same as (49)

(54) Rate of change in feet per second of the horizontal position of the starboard vortex

(55) Rate of change in feet per second of the altitude of the starboard vortex

(56) Rate of change in feet per second of the horizontal position of the port vortex

(57) Rate of change in feet per second of the altitude of the port vortex

58 Distance between vortex centers in feet

59 Horizontal separation between vortex centers in feet

60 Altitude difference between vortex centers in feet

(61) Tilt angle in degrees from horizontal of line through vortex centers. Positive is in the counterclockwise direction.

62) Same as (61) but in radians

 $\binom{63}{5}$ Rate of change of angle described in $\binom{61}{5}$. Units are degrees per second.

64 Same as 63 but units are radians per second

(65) Difference in circulation between the two vortices in square feet per second

66 Cross flight path windspeed in feet per second

(67) Wind velocity component in direction ground wind sensor is pointed at sensor location in feet per second.

 $\binom{68}{10}$ Orthogonal wind velocity components in feet per second at sensor location

) The magnitude of the wind velocity in feet per second

Print out on Page E-13

Information from photographic data cards.

(70) Time in seconds from vortex creation for the following observed positions.

- (71) Same as (50) except this is observed
- (72) Same as (51) except this is observed
- (73) Same as (52) except this is observed
- (74) Same as (53) except this is observed
- (75) Same as (58) except computed from observed position
- (76) Same as (59) except computed from observed position
- (77) Same as (60) except computed from observed position
- (78) Same as (61) except computed from observed position
- (79) Same as (62) except computed from observed position
- (80) Same as (54) except computed from observed positions before and after
- (81) Same as (55) except computed from observed positions before and after
- (82) Same as (56) except computed from observed positions before and after
- (83) Same as (57) except computed from observed positions before and after
- (84) Same as (63) except computed from observed positions before and after
- (85) Same as (64) except computed from observed positions before and after
- (86) Difference in circulation between the two vortices necessary to cause the angular rate (84).
- (87) Same as (66) except computed from observed positions before and after

Print out on Page E-14

Information from Ground Wind Data Cards

- (88) Position from tower of ground sensor (in feet)
- (89) Time in seconds from vortex creation when starboard vortex passes over ground sensor

(90) Time in seconds from vortex creation when port vortex passes over ground sensor

(91) Same as (80) except computed from positions observed by the ground sensor

92 Same as 82 except computed from positions observed by the ground sensor

(93) Cubic curve fit coefficients of cross flight path wind profile. Program does not use this curve fit.

 $V_{wind} = -2.13 - 0.236H + 1.731 * 10^{-3} H^2 - 4.644 * 10^{-6} H^3$

0.511 is the standard deviation of the points from the cubic curve.

PROFILE														5				i.						• 70000000£ +02 •	•0001000000000	•000000000+00•	• 00436000000		•0000000E+00•		• [] 400000 E + 0 Z •	•000000000€+00• •00000000€+00•	• 0004300000000000	 • 0 0 0 0 0 0 0 £ • 0 0 0 0 0 0 £ 	• 0000000000 + 00 •	• 0000000E + 00 •		• 2 3 8 0 0 0 0 0 E + 0 2 •	•000000000000	• 00-300-00-00-	• 00+300500000	100	•n0+1nn202020•
RUN 17 8707 WIND																								.4500000E+n2	• 29000900E+03 •	• 000000000E+00 •	• 0043000000 + 00 •		•0000000E+001	• 00000000E+UU	• 1 1 1 00000E+r2 •	• 15/00000E+02	• 00000000E+00•	" LU+ 3000000.Ju	 00000000+00 	•0000000E+00	• 00000000E+00	· 20+300000471•	• COQUADERE+DA.	 00000000000000 	• 0000000E+0r	043020000000000000000000000000000000000	•
D FIRCRAFT WAS CHOSEN	Ŧ	• 00099009E + 00	•10000005+03 •20000006+01		2125n000E+03	.2470000f+06 .#E800005+01	r	er +	۱.	+1 • 600000005+01	+	.480000005+03	60000005+03	30000005+03	• 3000000E+02			•0000000E+00			ľ		40000000000000000000000000000000000000	•2300000E+05	•1*r00000E+03.	• 000000000 + 00 •	• 00000000E+00 •	• 000-000-000-000-000-000-000-000-000-00	•0000000E+00	.00000000000.	•92000005+01.	.1570000055407, .000000005407	-0000000000000000000000000000000000000	•	• 006000000 + 00 •	• 040444444	• 00000000E+00 •	• 840000000 • 01 •		• 00000000 •	0+3000-	3-00-0000	0+3660
•		×				•					j e							•	11			•									•							н					
THF 8707	STNPUT ISTM	STIME	DYINE	JPRINT	SPEED	#E16H7	IPLAT!	1PL0T2	I PUNCH	LINE PTLINE	ISCALE	ĸ	45	PHTN	PMAX	SEND	SYORT	VDR	149161	SEND	SQN145 (ALT							WSPEED												
0	\odot																4)		(王-	• • 7)																					

000006+02 000006+00 000006+00 000006+00 000006+00 00000 ± + 02. 00000 ± + 00. 00000 ± + 00. 00000 ± + 00. 00000 ± + 00. 00000 ± + 00.

÷

÷

3

٠

		• 000000000000 •	• 0000000CE+00		
V S V		• 0000000000 • 00 •	• 00000000 + u0 •	•00000006+00+	• 00000000E +00 •
		•00000000E+00•	•00000000 + UD •	• N0000000 • • 00 •	• 00000000E • 00 •
		• 00000000 + 00 •	• 0000000E + 00 •	•00+30000000.	•0000000E+00.
		-000000001-00 -000000001-00	•000000000+00 •000000000+00	• 80000008 + 00 •	• 00000000E + 00 •
		•00000000E+00"	• 000000000 + 00 •	•000000000000	• 000000000000000000000000000000000000
		•000000000000	• 000000000 + 00		
ALTP		+23rgggggere+02			
NSPR		•00000000E+00			
CPOWER		+ 27000005+00		,	
VPOLY		+2			
COEF		• 00000000E + 00 •	• 00000000E + 00 •	•00000000£+00+	• 00000000E + 00 *
		• 00-3600-06-00 •	•0000000000•00•	+000000000 +00 +	• 0000000E+00
RESSG		.107780005+00			
JTEMP		2+			
47		• un +			
1LTIT		• 2300000E+02 •	+ 45000000 + 02 +	+70000000Ě+02+	 10000006+03
		* 140000E+03	• Z0000006+04 .	• 20300000E+04 .	 20000000E+04
		• 2000000000 • 04 •	• 2000000E+04 •	• 20000000E+04 •	• 20008000E+04 •
		• 2000000000000000000000000000000000000	- Z0000000000004 .	• 20000000E+04 •	• 200000005 + 04 -
					• 20000000E+04•
		• 2010101010+0+0+	* 20000000 - 01 - 1		• <000000000000000000000000000000000000
		2000000E+04	• 200000000 + 0 +		
l E H D		•5107000E+01.	• 48000000E+01 •	4700000F+01	•47000000c+v1.
		•42600001E+01	• 2000000E + C 2 •	• 20000000r+n2 •	• 200000005+02
		. 20r0r009E+02 .	• 2000000E+02 -	- 20000000 +02 ·	
4		 20gna00gE+02 	-2000000E+C2	 2000000€+02+ 	• 200000006 + 02 -
		- 20c ⁿ 0000E+02	 2000000000000000000000000000000000000	+ 20000000E+02 +	 20000000E+02
		• 20000000000000	 2000000E+-2 	• 2000000000 + 02 •	 20000000E+02,
		• 2000000000000000000000000000000000000	.20000000E+r2,	.2000000€+02,	• 200000000E + UZ *
4PJLYT	N	+	1		
COEFT			• C26000005+20 .	• 00000000 • 00 •	
		00+	+00003000E+uu	•000000000	•0000000E+00"
IPOTEN					
74 140					
		E) -			
C J L S		1+			
4E1GHT		• 20020202E+00			
HIE.I.	Ŵ	• 000202020 + 03			
		•00000000000	• 00000000E + JU *	• 00000000 + 00 •	• 0000000E + 00
END.					
AUGES					
HIX	4	• 0 <u>60</u> 0667776			
1100	61	•57000000E+D3			
(Z)					
	マート	₩≻ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩			C000000000000000000000000000000000000

ų,

E-8

NSEN		+12			
YSEN		.5500000E+03.	• 45000000E+03 •	• 35000008 + 03 •	. 2500000E+03,
1		.1500r00re+03.	 5000000E+02 	50000000E+02.	1500000E+03,
		25000001E+03.	3500000E+03+		55000000£+03.
		• 00C01000E + 00 •	· 000000000000	·000300000.	• 0000000E+00
ZSEN	•	. 6000000E+01.	. 60000000E+01 .	* 60000000E + 01 +	· 6000000E +01 ,
		. 60000001E+01.	• \$900000E+01 •	• 6000000€ +01 +	· 600000005 *01 .
		. 6010000E+01 .	• \$000000E+01 •	. 6000000E+01 .	. 6000000£ *01 .
		.00+300000000.	• 0000000E+00 •	• 00000000E + 00 •	* D000000E+00
PHI	H	. 2769n00nE+03.	-27000000E+03.	. 2700000£ +03 +	• Z7000000E +03.
		.2703000E+03.	+ 27000005+03 +	*2700000E+03+	· 27000000E+03,
		. 2707000E+03.	• 2700000E+03 •	.2700000E+03.	· 2700000E +03.
		.27000005+03.	. 2700000E+03.	+2700000E+03+	• 2700000E +03
THETA		. 9000000E+02 .	• 9000000E+02 •	* 9000000E +02 +	• 9000000E + 02.
		. 90000000E+02.	- 9000000E+02 -	. 9000000F+02.	. 9000000E +02.
		. 90-9-00-00-0-02.	• 90000000E + 02 •	. 9000000E+02.	· 9000000E +02.
		. 90000005 + 02 .	• 70000005+02 •	* 90000000 + 52 +	• 9000000E +02
I SENS		•0•	*0*	•0•	•0•
		+3,	+ D +		+3.
		+3.	4 0 +	+3,	+3,
		.1.			

SEND

E-9

×

5

SENSOR

0

ω.

t

ATTON LANDENG, OUTBOARD ENGINE AWAY TYPE IS STOT PISPLACEMENT FROM TOWER 271.FF ALTITODE ASREAST OF TOWER 191 F1 REIGHT 233000, FOUNDS 244.0 F1/SEC URE & DEGREES TRUE (NOT USED) WIND SPEED 10 WHM TNOT USED) WIND AMGLE 0 DEGREES TRUE (NOT USED) WIND WIND WIND WIND WIND WIND WIND WIND
--

0,000 000RUN 17 8707 WIND PROFILE (3) Uses recorded Wind and Temperature

	SPEED	10+2+10*	.1253+01	10+4411-	•1564+01	•2416+01	• 3771+01 • 4592+01									1
				Ξ	3	1.6	••									
	PRESSURE MI	1-0245+01	1.0254+01	1+0256+03	1.0250+03	1.0243+03	1.0238+01									
) HPERATURE K	2.7811+02	2+7789+02 2+7786+02	2.7791+02	2+7784+02	2•7786+02 2•7786+02	2•7783+02 2•7776+02									
8	TENTIAL TE	2.7604+02	2.7591+02 2.7591+02	2+7591+02	2+7590+02	2•7596+02 2•7594+02	2•7597+02 2•7594+02	33 DVD/DZ	1.0100-02	ž3.5188-02	6-3320-03	-7-5042-02	5.4563-02	8-2024-02	3.4210-02	-1+6506-03
<pre>[8] #IND SPEED 9.1793999900 1.1100009401 1.1900009401 1.350000401 1.570000401</pre>	23 CHICHARDSON POTENTIAL I CEMPERATURE & PRESSURE MA WIND SPEEN	-1.6542-01	-8.1389-02	-8.3E51-01	4+9300-02	-9.8879-03 8.9898-02	3.0878-03 -7.8174-02	32 DVC / DZ	-9.3359-02	-6.6381-02	-5.8541-02	-4-2639-02		-4-3917-02	-5.3277-02	-6.0298-02
8 0000 U	23 DU/02 24	8.6344-07	5.5544102	1 - 2000-02	9.3636-02	4.8421-02 7.0000-02	4.1429-02 5.5000-02	(3) DUD / DZ	1.0100-02	-3.5188-02	60-03020-03	-7-5042-02	20-05-01+1 5-65-1-5	9-2024-02	3.4210-02	-1-6506-03
() С. С. С	220TH/02	10.0	-2.2199-03	-	1.1316-03	-1-9885-04 2-9374-03	9.9945-05 -2.0282-03	30 DUC / DZ	9.3359-07	6.6381-02 5.7530-02	20-1458-5	4 - 2639-02		4.3917-02	5.3277-02	6 • 0298-02
	DALTITUDE 2	4 • 5000+01	1 • 0000 • 02 1 • 0000 • 02 1 • 4000 • 02	7-0000+91	1.0000+92	1 • 4000+02	1.4000+92 1.4000+92		4.5000+01	7.0000+01	20+000+1	7-0000+01	1 - 4000+02	1-0000+02	1 - 4000+02	1.4000+02
1 0.76471AL 7 1 2.7545502402 0.2 1 2.75592284597402 0.2 1 2.755945097402 0.2 2 2.755945097402 0.2 2 2.75594509402 0.2	ALTITUDE 1	2.3000+01		10+1005+0	4.5000+01	10+0406*4	10+6000-1 10+6000-1	LTITURE	10+6006-5	2 - 3000+01	10+06-2	4 • 5000 • 0		10+1000-1	10+	1+450+43
(1-) 2.3000000+01 2.75950 7.0000000+01 2.759550 1.0000000+01 2.759450 1.0000000+1 2.759450 1.4000000+12 2.759450	OALTITUDE COALTITUDE 12ALTITUDE	10+300+*6	10+0051+4 10+0051+4	5+7500+01	7.2520+01	9 - 2550+01 9 - 5000+01	1 • 25r0+02 1 • 20r0+02	OALTITUDE 20	3+4000+61	4 • 6500+01	8+1500+01	5-7500+01		10+0005+6	1-0500+02	1 • 2020+02
	Ð							Ð								

1 • 1 203+00 2 • 9093+00 1 • 0097+01 1 • 1 1 43+01 1 • 2 485+01

8 • 9 | 93 = 0 | 9 • 1 6 9 6 - 0 | 9 • 9 | 1 | - 0 | 1 • 7844 • 0 0 1 • 7844 • 0 0

29 Zero

 (34) RANGF-MEAN FICHARDSON NUMBER -2.5310300-01

 (35) SFALL GAMMA E
 .9544449

 (36) Z ZERO TOLTAL =
 2.346841

 (37) B1 =
 .2704781

E-11

0.00000000

 (38) GAMMA IN FIX.2/SFC = 3,44867923403

 (39) EDNY VISCESITY IN FT.0.7/SEC = 4.074849720-01

 (40) TEMPERATURE IN RANKINE = 4.99349861+02

 (41) DEWSITY IN SLUGS/FT.0.3 = 2.47358737-03

 (42) ACDUSTIC VEINCITY IN FT/SEC = 1009540765403

 (43) STARILITY IN I/SEC002 = 0.000000

 (44) INITIAL PARAMETER (DIMENSI) = 0.000000

÷,

-7

	TOWER	6000			TOWER	0 • 0 0	
	RESPECT TO TOWER	HORIZONTAL D. COD			WITH RESPECT TO	0000	
	WITH	HORIZON1	5 E V E N - 1 - 2 6 4 + 0 1 3 - 1 6 2 4 + 0 1 - 1 - 2 6 4 + 0 1 - 1 - 2 7 7 - 0 1 - 1 - 3 0 3 + 0 1 1 - 3 0 3 + 0 1 F I F T F R N		HT1W	Он	
10+2512152+0	• 65372152+01	.95506108+00 Angle From -12.7	51X -1.704+00 3.162+00 -8.238+00 -8.238-01 3.685+00 Fourteen		9.08741903+01 9.08741903+01	-2.70585191+00 0 Angle From Y -12.4	51X 1.917+00 3.162+00 1.917+00 1.917+00 5.050=01 3.747+00 FOURTEEN
н	٠	N	FIVE 3.082-01 3.082-01 9.082-00 3.384-01 3.384-01 3.307+00 3.307+00 1418460 1418460		122 = 9.09	DZ2= -2.70 0.000 ELOCITY -13	- FIVE -1.885-01 -1.885-01 -1.885-01 -1.885-01 3.523-01 3.523-01 3.523-01 1.87-00 1.41770 1.41770 1.41770
		-1.17770166-01 (7) 9. (6) z sfparation 0.000 Cross runmay wind velocity Ensars	FOUR -3.111+60 -3.121+60 -3.162+00 1.221+00 1.221+00 4.438+00 4.438+00 4.438+00 4.438+00			ATION IND V	F F D U R - 3 • 5 4 7 + 0 0 3 • 1 6 2 + 0 0 - 3 • 5 4 7 + 0 0 - 3 • 5 5 5 - 0 2 4 • 5 5 3 + 0 0 1 4 6 F L V E
د	-8.3104400×+00	2 2	THRE C.070 0.000 0.000 0.000 0.000 0.000 0.000 1.571 1.00 1.571 1.00 1.571 1.00 1.571 1.00 1.571 1.00 1.571 1.00 1.471 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		-3.02720704401	5	5 E M S C R
6+282+30 6+282+30 CRAFT CRAFT 1 48		42=	7%0 7.000 0.0000 0.0000 0.0000 0.0000 0.000000	e 3	4 7 4 4 7 1	DY2= Ration Ood	7 # 0 7 # 0 0 • 0 0 0 • • 0 0 0 • • • 1 2 2 1 • 0 0 • • • 2 2 4 0 0 • • • • • 2 2 4 0 0 • • • • • • • • • • • • • • • • • • •
••••••••••••••••••••••••••••••••••••••	9-45372152+01	95506198+ 59 y Se 6ama =	0NE 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	GENERATING AIRCRAFT		058519 7 7	
855C+ <u>8</u> 57+ <u>70</u> 55C+ <u>8</u> 57+ <u>70</u> 72 72 51 = 9-	۲، (آع	<u> </u>	2550 2550 2500 2500 2500 2500 2555 2555	SEC. PEHIND G	. –	1 = DEL	ZFR0 ZFR0 0000 00000 00000 000000 000000000 0000
AIR SPEEC 45 74.5055132.72	50) YI = -1.36955137+92	54 η γι = -1.35,248765.01 55 07 58 58 P A R A TIGN RE1 # FN UNATICES 59 54 58 4 -0.000 0.000 63 64	 (5) SENSOR DEFENIES (6) X VELOCITY (6) X VELOCITY (6) AIR SPEET (6) AIR SPEET (6) AIR SPEET (7) VELOCITY (7) VELOCITY	26.0000° SEC. Yf = _4.34006.27.02		DTIE -1,34324467441 D7 SEPARATION 967 444 VARTICES # = 0.000 -1.004	SENSOR ORIENTEN V X VELOCITY Y VELOCITY Z VELOCITY X VELOCITY Z VELOCITY AL SPEED SENSOR ORIENTE, V Y VELOCITY X VELOCITY X VELOCITY X VELOCITY X SPEED

1

28.000005 SFC. REHIND GENERATING AIRCRAFT

Y1 ≡ =4+¢61712"72+07 Z1 = 8+5723A035+n1 Y2 = =3,24649918.

•5723A035+n1 ¥2 ≡ =3,24649918+02 22 ≡ 8,57238035+01

5

				3 • 4 4 8 - 0 2	(J) 7.492-03	2 - 4 9 0 - 0 2		
				2 • 0 9	78.441	1.37		
D	•	o	٥	84 Izontal	TA) 4 120NTAL	73 IZONTAL	11	71
не і бит	HEIGHT	HEIGHT	не і бнт	HEIGHT Rom Hor	НЕ 1 6Н Т Кон но r	•68 AND HEIGHT 73 Angle From Morizontal .•00	НЕІСНТ	HEIGHT
0 AND HEIGHT -1.50	a and height -4.00	C AND HEIGHT -3.50	0 AND HEIGHT -7.00	-12 AND HEIGHT 84 Angle From Horizontal -2.00 -5.00	73 AND HEIGHT (4),4 ANGLE FRON HORIZONTAL (9,441) -2.50 500	-68 AND HEIGHT Angle From Moi -1.00	-96 AND HEIGHT 0+000	-118 AND
PORT DISPLACEMENT Z Component =	PORT DISPLACEMENT Z comPonent ≈	PORT DISPLACEMENT Z COMPONENT =	PORT DISPLACEMENT Z Component =	PORT DISPLACEMENT 7. Z SFPARATION 5.00 -8.0C Z COMPONENT = -11.5 Z COMPONENT = CROSS RUNWAY WIND VELOCITY -	D. Z SFRARTION -1.00 AGLE FROM HORIZONT -14.0 Z SFRARTION -1.00 ANGLE FROM HORIZONT -14.0 Z COMPONENT = -2.50 -16.5 Z COMPONENT = -500 CROSS RUNWAY WIND VELOCIT (87-15.2	PORT DISPLACEMENT Separation 3.00 Z Component =	PORT DISPLACEMENT Z COMPONENT =	PORT DISPLACEMENT -118 AND HEIGHT
PORT U Z C	PORT D 2 C	PORT D Z C	PORT D	PORT C Z SFPARATJ Z C Z C Z C UNWAY WING	Z SFRART	PORT Z SEPARAT	PORT	PORT
-15-0	-14.5	-14.0	-14.5	0	-1	بد 125. = = = = = = = = = = = = = = = = = = =	-11-0	
GENERATION IS 14 NEIGHT 111 Y COMPONENT #	GENERATION IS 14 D HEIGHT 108 Y Y COMPONENT =	FNERATION IS IA HEIGHT 100 Y COMPONENT =	GFNERATION IS 2° n Height 93 y y component =	GENERATION IS 27 D HEIGHT 79 Y SEPARATION IS Y COMPONENT = Y Y COMPONENT =	HETCH IS (02 HETCH (025 SEPARATION (0275 (025 1000 1000 1000 1000 1000 1000 1000 1	S NI	JORTEX GENERATION IS 28 9 and height 9 elocity y component =	K GENERATION IS 30 ND HEIGHT D
VORTEX G -33 AND VFLOCITY		VORTEX G -92 AND VELOCITY		H VORTEX GFNEI 	VORTEX C 1955 AND VELOCITY VELOCITY	- 193 AND -193 AND 125. Velocity	VORTEX (0 AND Velocity	· VDRTEX (
TIME FROM VORTEX Splacement -33 An Transport velocit	TIME FROM SPLACEMENT TRANSPORT	TIME FROM Splacement Transport	TIME FROM SPLACEMENT TRANSPORT	ULATA TIME FROM VORTEX ARD DISPLACEMENT	TIME FROM SPIACEMENT VCDTICES TRANSPORT TRANSPORT TRANSPORT B4-07	TIME FROM Splacement Vortices Transport	TIME FROM SPLACEMENT TRANSPORT	TIME FRO
PHOTOGPAPHIC DATA TIME FROM VORTEX GENERATION I Stardard fiselacement =33 and height jii Stardard vortex transport velocity ficompon	PHOTOGRAPH_C CATA TIME FROM VORTEX GENERATION IS Startoarn Lisplacement -63 and Height 108 Startoarn vortex transport velocity y compon	PHOTOGGARHYC 2.474 TIME FROM VORTEX GFNERATION IS Stardard Disolacement -92 and Height 100 Stardary Vortex transport velocity Y COMPON	PHOTOGOAPH - DATA TIME FROV VORTEX GFNERATIO Star Displacement -120 and Height Stardia" - Vortex transport velocity - V CO	PHOTOGRAPH'C DATA TIME FROM VORTEX Startard Displacement	РИЛТОБААРИ: Г DATA TIME FROM ORTEX 6 STAR .: PD DISPIACEMENT SEPARATION AFTAFEN VOPTICES 7 130. SEPARATION AFTAFEN VOPTICES 7 130. STAPRGAR CORTEX TRANSPORT VELOCITY M = 64, 928 (5)1.584-07 PELTA GAMM	PHOTOGRAPHIC DATA TIME FROM VORTEX GENERATION IS Stapanard Displacement -193 and Height 70 Separation Between vortices 125. Y Separati Port Vortex transport velocity Y Compoi	PHOTOGRAPHIC DATA TIME FROM VORTEX GENERATION IS Starparpard Displacement o and Height o Port vortex transport velocity v componi	PHOTOGRAPHIC DATA TIME FROM VORTEX GENERATION IS stap:odard displatement o and height o

E-13

×

÷.

(90) 22	52	36	40	62	83	103	*
Ĩ	IME	1 ME	INE	INE	3W1.	INE	
F.	5	AT 1	1	E .	AT 1	1	
PORT VORTEX AT TIME	PORT VORTEX AT TIME	PORT VORTEX AT TIME	PORT VORTEX AT TIME	PORT VORTEX AT TINE	PORT VORTEX AT TIME	POST VORTEX AT TIME	
0 8 1	140	T BO	TaO	081	Telo	100	
	٩	0.	٩	٥	a	6	
6	1.6	23	29	35	5	54	
TTHE	TIME	3 H L	1 I HE	TIME	J. JE	3411	
A.T.	Ψ,	r a	н.	F.	5	F	
VORTEX	STARBOARD VORTEX AT TIME -14.3 -14.3	5T4RA490 v0RTEX AT TIME -16.7 -11.1	≈т⊥R804RD VORTEX ⊥T TIME -16+7 -5.88	STARBOARD VORTEX AT TIME =12.5 -4.74	STARBOA¥O VGR1EX AT 1,4E -7.69 -5.00	STARBOARD VORTEX AT TIME	
8740 7 3	804°0 3 3	Roker 7	804RD 7 8	8048D 5	04408 6	BOAPD	
90 T	57488 -14.3		514 RB -16.7 -5.89			STAR	ł
	55	**	- 55				
68 ก * сонромент (1) - 14.7 * сомромент (1)-14.7 * сомромент (1)-14.3	-SC Y COMPONENT # Y COMPONENT #	SD Y COMPONENT Y COMPONENT	-250 Y COMPONENT Y COMPONENT	-350 Y COMPONENT = Y COMPONENT =	-450 Y COMPONENT = Y COMPONENT =	-55 <i>°</i>	
	÷	7			1		5
RDM T0#ER ELOCITY	ROM TOKE ELOCITY ELOCITY	ROM TOWE ELOCITY ELOCITY	ROM TOWE	ROM TOWE ELOCITY ELOCITY	ROM TOWE ELOCITY ELOCITY	ROM TONE	
OUND SEUSCR DATA POSTION FROM TOW Starpnar vortex transport velocity Part vortex transport velocity	PUND SENSOR DATA POSTICN FROM TOKER Stargoard Vortex fransport velocity Port Vortex transport velocity	NI'ND SFNSAR DATA POSTION FROM TONER Starroar vortex tPANSPORT VELOCITY Part vortex transport velocity	OUND SENSOR BATA POSTION FROM TOWER Stardard vortex transport velocity Port vortex transport velocity	DIINŐ SENSOR DATA POSTION FROM TOWER Stardarn vortex transport velocity Port vortex transport velocity	DIND SENSOR DATA POSTION FROM TOREP Starndard Vortex transport velocity Port vortex transport velocity	PASTION FROM TONER	11.0
A X X T T T T	44	+ +		F F	1 1		
GROUND SENSCR DATA Starporr Vortex Port Vortex	GROUND SENSOR DATA Stargoard Vortex Port Vortex	GROUND SENSOR DATA Starrdary vortex Port vortex	GROUND SENSOR BATA Starboart vortex Port vortex	GRAHING SENSOR DATA Starrdarn vortex Part vortex	GROUND SENSOR DATA Starboard Vontex Port Vortex	GROUND SENSOR DATA	() () () () () () () () () () () () () (
Pop	SE SE	SFI SFI	561 1004	NO N	S S S S S S S S S S S S S S S S S S S	5EI	14
CHOUNI	GROUNE STAR	CHOUND STAR	GROUND STAR	GRUHNÖ STAR	GROUND STAR	GROUND	COFFY
					E	-14	(

00 t **4**0 C0L * 0 0.300 C.000 112. 1.731-03 -4.444-06 -- 234 -2.13 (3) COEFX =

Appendix F

31

FLOW CHARTS FOR LOCKHEED WAKE VORTEX TRANSPORT COMPUTER PROGRAM

Following is a detailed flow chart of the Lockheed Wake Vortex Transport Computer Program. A simple block flow chart is presented at the conclusion of this Appendix to aid the user in establishing the general calling sequences.

F-2

F = 4

F-6

F**-8**

ï

ł

F-10

Appendix G

SUMMARY OF PREDICTED WAKE VORTEX TRACKS AND COMPARISON WITH EXPERIMENT

LIST OF RUNS PROVIDED IN THIS APPENDIX

LIST OF RUNS (Concluded)

FIRST TIME FOR S IS 12

FIRST TIME FOR P IS 18

G-4

FIRST TIME FOR 5 IS 14

FIRST TIME FOR P IS 25

G-8

FIRST TIME FOR F IS 26

G-10

FIRST TIME FOR S IS 18

FIRST TIME FOR P IS 30

G-12

DISPLACEMENT FROM TOWER IN FEET

FIRST TIME FOR P IS 16

FIRST TIME FOR P'IS 28

RUN 3 8747

C-28

RUN 10 8747

RUN 12 8747

RUN 16 8747

RUN 30 8747

RUN 31 8747

RUN 33 . 8747

RUN 55 8747

RUN 57 8747

DISPLACEMENT FROM TOWER IN FEET

C-74

RUN 59 8747

FIRST TIME FOR P IS 7

FIRST TIME FOR S IS 24

FIRST TIME FOR \$ IS 16

FIRST TIME FOR P IS 28

RUN 8 8707

C-88

FIRST TIME FOR P 15 44

RUN 10 8707

FIRST TIME FOR S IS 18

FIRST TIME FOR F IS 24

RUN 15 8707

C-99

RUN DATA CARD LANDING, OUTBOARD ENGINE AWAY FROM TOWER AT IDLE CONFIGURATION AIRCRAFT TYPE IS 8707 RUN NUMBER 18 AIRCRAFT DISFLACEMENT FROM TOWER 275 FT AIRCRAFT ALTITUDE ABREAST OF TOWER 209 FT AIRCRAFT WEIGHT 231000. POUNDS AIRSPEED 244.9 FT/SEC TEMPERATURE 6 DEGREES C (NOT USED) INITIAL WIND SPEED 8 MPH (NOT USED) INITIAL WIND ANGLE O DEGREES TRUE (NOT USED) FINAL WIND SPEED 9 MPH (NOT USED) FINAL WIND ANGLE O DEGREES TRUE (NOT USED) AIRCRAFT HEADING 130 DEGREES MAGNETIC MONTH 10 DAY 18 HOUR 9 MINUTE 54 LOCAL TIME

FIRST TIME FOR S IS 18

240

220

200

180

٥

FIRST TIME FOR P IS 32

DISPLACEMENT FROM TOWER IN FEET

Т

FIRST TIME FOR 5 IS 26

FIRST TIME FOR P IS 60

FIRST TIME FOR P 15 34

G-113

C-114

C-117

G-121

RUN 34 8707 FIRST TIME FOR S IS

RUN 34 8707

FIRST TIME FOR P IS 62

G-129

RUN 41 8707

Appendix H

REPORT OF INVENTIONS

After a diligent review of the work performed under this contract, no new innovation, discovery, improvement or invention was made.

