ANALYSIS OF PREDICTED AIRCRAFT WAKE VORTEX TRANSPORT AND COMPARISON WITH EXPERIMENT

Volume II -- Appendixes

DOCUMENT IS AVAILAELE TO THE PUELIC THFOUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22151.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION SYSTEMS RESEARCH AND DEVELOPMENT SERVICE Washington DC 20591

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

PREFACE

This document represents the final report of Contract DOT-TSC-593 and covers the period 2 April to 2 December 1973.

This study was performed by personnel at the Lockheed Missles \& Space Company, Inc., Huntsville Research \& Engineering Center, Huntsville, Alabama. The project engineer and principal investigator for this study was Dr. M.R. Brashears of the Fluid Mechanics Applications Group.

The authors are especially grateful to Dr. J.N. Hallock, TSC Contracting Officer's Technical Monitor, for his contributions and able assistance during the performance of this contract. We also sincerely thank Dr. D.C. Burnham and Mr. Tom Sullivan of TSC for providing the vortex tracking data. To Mr. L. Garodz and Mr . N. Miller of NAFEC, we express our appreciation for their support during the testing and in reduction of the rawinsonde and tower meteorological sensor data.

cONTENTS

Section

1 INTRODUCTION
2 VORTEX TRANSPORT MODEL
2.1 Fundamentals of Vortex Motion
2.2 Vortex Decay, Bursting and Instability
2.3 The Effect of Mutual and Self-Induction
2.4 Unification of the Wake Vortex Transport Mode1 2-16

MODEL SENSITIVITY ANALYSIS AND PARAMETRIC STUDY 3-1
3.1 Wind Field Data

3-1
3.2 Aircraft Mix 3-9
3.3 Corridor Spread 3-16
3.4 Vortex Circu1ation and Separation 3-25
3.5 Vortex Decay 3-38

PROOF OF CONCEPT TESTS 4-1
4.1 NAFEC Test Faci1ities 4-1
4.2 Determination of the Wind Profile 4-2
4.3 Photographic Tracking of Aircraft Vortices 4-4
4.4 Ground Wind Vortex Tracking Considerations 4-9
4.5 Description of the Vortex Signature 4-11

COMPARISON OF PREDICTED VORTEX TRANSPORT WITH
EXPERIMENTAL RESULTS
5.1 Comparison of Predicted and Measured Ground
Wind Vortex Signatures
5.2 Comparison of Predicted and Measured Vortex $\begin{aligned} & \text { Tracks }\end{aligned}$
5.3 The Pasquill Classes and Their App1ications 5-30
5.4 Representative Vortex Tracks for Various
Aircraft Types
5.5 Determination of Wind Shear 5-64
5.6 Effect of Ekman Spiral on Cross-Runway Wind
Profile

CONTENTS (CONTINUED)

Section

Page

> 5.7 Analysis of Vortex Tilting Computed by Photographic Data Reduction
5.8 Comparison of Predicted Vortex Separation
with Measured Separation
5.9 Discussion of Core Size Maximum Velocity
and Circulation Decay
ANALYSIS OF WIND SHEAR AND GROUND PLANE EFFECTS AS POSSIBLE MECHANISMS CAUSING VORTEX TILTiNg 6-1
6.1 Streamlines for a Class of Vortex Fields 6-1
6.2 Additional Thoughts on Mechanism of Vortex Tilting 6-14
6.3 Summary of Preliminary Observations on Vortex Tilting 6-21
RECOMMENDATIONS FOR VORTEX DATA COLLECTION IN THE VICINITY OF AN AIRPORT 7-1
7.1 General 7-1
7.2 Tower Array 7-1
7.3 Sensor Locations on Towers 7-3
7.4 Data Sampling Rates 7-4
7.5 Wind Measurement 7-4
7.6 Temperature Measurement 7-5
7.7 Barometric Pressure Measurement 7-6
7.8 Relative Humidity Measurement 7-6
7.9 Acoustic Sounder for Data Above Test Site 7-7
7.10 Summary of Sensor Locations 7-7
7.11 Sensor Calibration 7-8
7.12 Sensor Reliability 7-9
7.13 Discussion of Computed Meteorological Variables 7-10
7.14 Determination of a Representative Roughness Length 7-12
CONCLUSIONS AND RECOMMENDATIONS 8-1
REFERENCES 9-1

CONTENTS (CONTINUED)

Section	VOLUME II	Page
Appendixes		
A	Summary of Aircraft Flybys	A-1
B	Probable Stability Conditions Prevalent During Selected NAFEC Flybys at Atlantic City, N.J.	B-1
C	Description of Output Plots of Wake Vortex Transport Computer Program	C-1
D	Description of Input Requirements for Lockheed Wake Vortex Transport Computer Program	D-1
E	Summary of Line Printer Output of Lockheed Wake Vortex Transport Computer Program	E-1
F	Flow Charts for Lockheed Wake Vortex Transport Computer Program	F-1
G	Summary of Predicted Wake Vortex Tracks and Comparison with Experiment	G-1
H	Report of Inventions	H-1

Appendix A
SUMMARY OF AIRCRAFT FLYBYS

This appendix summarizes aircraft information for the test days of interest. The first priority flybys are those recorded on 17 and 18 October 1972 and 1 November 1972. However, predictive vortex tracks have been generated for most of the runs shown in this appendix. The wind speed and direction are the unaveraged values recorded at the 140 -foot level on the tower corresponding to the time of aircraft passage.

易曷		$\stackrel{\square}{\square}$		فn	$\stackrel{\infty}{0}$	$\stackrel{\rightharpoonup}{\ddot{\exists}}$	$\stackrel{\sim}{\square}$	$\stackrel{\infty}{\ddot{-}}$		
	$\frac{\sigma}{\infty}$									
	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{7}$		$\stackrel{\sim}{\sim}$	\sim	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ² }}{ }$	$\stackrel{\infty}{\sim}$		N
	－			$\stackrel{\circ}{\circ}$		$\stackrel{+}{4}$	$\stackrel{\text { ¢ }}{\text { m }}$			
	∞	\bigcirc		－	∞	－	∞	∞		
	\longrightarrow 筞 \longrightarrow									
	∞	\bigcirc		＊	∞	－				＊
宮						－		\＃		N
		N		$\underset{\sim}{7}$	ㄲ	$\stackrel{\text { ®ㅏㄱ }}{ }$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$		玉
	$\stackrel{\sim}{\square} \longrightarrow$									
	$\because \longrightarrow$									
	$\stackrel{\circ}{\sim}$									
${ }^{5} 9$										
碳	\qquad									

A－2

$\begin{aligned} & \text { 品 } \mathrm{O} \\ & \text { H } \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\circ}{\dot{w}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{M} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\mathrm{~N}} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \ddot{\sim} \end{aligned}$	$\begin{aligned} & \underset{m}{m} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{n} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & \stackrel{O}{4} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{7} \end{aligned}$
	$\underset{\sim}{0}$	$\stackrel{i n}{N}$	$\stackrel{-}{\mathrm{N}}$	$\underset{\sim}{N}$	$\stackrel{i n}{N}$	$\stackrel{O}{N}$	$\stackrel{n}{\sim}$	$\stackrel{N}{N}$	$\underset{N}{\underset{N}{*}}$	$\stackrel{\text { d }}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { N }}{\sim}$
	1	8	$\underset{\sim}{\circ}$									
	1	$\stackrel{-1}{ }$	은	$\stackrel{\sim}{\sim}$	은	$\stackrel{\text { n }}{\sim}$	$\stackrel{\sim}{\sim}$			－		
	$\underset{\sim}{\circ}$	8	$\stackrel{\text { in }}{\sim}$	$\stackrel{i}{i}$	$\underset{\sim}{\circ}$							
$\begin{array}{ll} \text { 式烒 } & \text { द } \\ \text { His } & \text { 足 } \end{array}$		－	－			－	$\underset{\sim}{\sim}$		－	－		1
定	$\stackrel{\infty}{\sim}$											\rightarrow
芴号	읒	$\stackrel{\text { N }}{\sim}$	$\stackrel{i n}{7}$	$\stackrel{0}{\underset{\sim}{1}}$	$\underset{\sim}{ \pm}$	$\stackrel{\text { in }}{\sim}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\#}$	$\underset{\sim}{\text { N }}$	$\stackrel{\sigma}{=}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	¢
	$\stackrel{\square}{=}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\exists}$	$\stackrel{0}{\underset{1}{2}}$	$\underset{\sim}{\square}$	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{n}{\underset{\sim}{2}}$	$\underset{-}{ \pm}$	$\stackrel{\stackrel{n}{\square}}{\sim}$	$\stackrel{M}{7}$	$\stackrel{\text { N }}{\sim}$	$\vec{\exists}$
	$\begin{aligned} & 0 \\ & 0 \\ & -1 \end{aligned}$	$\stackrel{\circ}{\sim}$	$\underset{\sim}{\mathrm{H}}$	억	$\underset{\sim}{\text { H }}$	$\stackrel{\sim}{\sim}$	$\stackrel{0}{\sim}$	$\stackrel{0}{\mathbf{m}}$		윽	－8	N
	윽											＋
	$\stackrel{\text { N }}{\text { N }}$	${\underset{\sim}{N}}_{\underset{m}{N}}^{\infty}$	$\begin{aligned} & N \\ & \underset{m}{N} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Nor } \\ & \text { (} \end{aligned}$	$\stackrel{N}{N} \underset{\oplus}{N}$	$\underset{\sim}{N} \underset{\sim}{N}$	$\stackrel{N}{N} \underset{\substack{N \\ \sim \\ 7}}{ }$	$\stackrel{N}{N} \underset{\sim}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N} \underset{\sim}{N}$	$\stackrel{N}{N} \underset{\sim}{N}$	$\stackrel{N}{N} \underset{\sim}{N}$

A－3

号曷曷	$\left\lvert\, \begin{aligned} & \tilde{N} \\ & \stackrel{y y}{*} \end{aligned}\right.$	$\stackrel{n}{\stackrel{n}{=}} \stackrel{1}{n}$	$\stackrel{\sim}{0}$	$\begin{aligned} & \text { in } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ö } \\ & \stackrel{\ddot{0}}{ } \end{aligned}$	$\begin{aligned} & \text { ti } \\ & \stackrel{\tilde{O}}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\ddot{0}} \end{aligned}$	$\stackrel{\text { n }}{\stackrel{\rightharpoonup}{\ddot{0}}}$	$\begin{aligned} & \text { 출 } \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \vec{N} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\sim}{\tilde{\sim}}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\text { 世 }}{\text { ¢ }}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\tilde{0}} \\ & \hline \end{aligned}$
言京㐫	$\stackrel{m}{a}$	$\stackrel{\text { m }}{\substack{\circ}}$	$\frac{m}{1}$	$\frac{\#}{2}$										
	N	$\stackrel{\sim}{2}$	ヘู	$\stackrel{\circ}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{ }$	N	N	$\stackrel{\sim}{\sim}$	N	－	－	－	
	$\stackrel{\square}{\square}$	®	1	～	1	$\stackrel{\circ}{\sim}$	1	$\stackrel{\circ}{\sim}$	号	1	1	$\stackrel{\sim}{\sim}$	I	
	$\stackrel{ }{-}$	n	I	∞	I	∞	1	\bigcirc	－	1	1	\bigcirc	1	I
	$\stackrel{\square}{\square}$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{-}$	in	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{i}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
	∞	\bigcirc	\bigcirc	σ	σ	σ	$=$	9	\checkmark	∞	9	\bigcirc	\bigcirc	∞
容	$\stackrel{\sim}{\sim}$													
	N	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\stackrel{\square}{7}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{9}$	$\stackrel{\square}{9}$	$\stackrel{\square}{\square}$
	ָ	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	¢	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	\＃	\cdots	N	N	$\vec{\sim}$	－	$\stackrel{\sim}{7}$	$\stackrel{\circ}{\square}$
	$\stackrel{\text { in }}{\sim}$	9	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\circ}{\sim}$	$\stackrel{\square}{7}$	$\stackrel{\square}{\square}$	$\stackrel{\circ}{3}$	$\stackrel{\circ}{\square}$	${ }^{\circ}$	안	$\stackrel{\square}{9}$	出	$\stackrel{\sim}{\sim}$
	\％													\rightarrow
${ }^{5}$	等罢	N	$\begin{aligned} & \text { No } \\ & \text { Nin } \end{aligned}$	ก			N	$\stackrel{N}{N}$	$\begin{gathered} \text { NiN } \\ \text { Nin } \end{gathered}$					

A－4

A- 6

最曷		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { N} \\ & \dot{\circ} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\circ}{\ddot{\circ}}$	$\stackrel{H}{\ddot{O}}$	$\stackrel{\infty}{\stackrel{\infty}{\sigma}}$	$\begin{aligned} & \tilde{N} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{gathered} \stackrel{n}{\tilde{\sigma}} \\ \stackrel{\sigma}{\sigma} \end{gathered}$	$\begin{aligned} & \alpha \\ & \underset{\alpha}{\alpha} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \stackrel{\oplus}{\circ} \end{aligned}$	
	$\stackrel{\circ}{\square}$													
	－	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\text { ® }}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$				－	$\stackrel{N}{\sim}$			\longrightarrow
	$\underset{\sim}{\underset{N}{\mathrm{O}}}$	I	\％	$\stackrel{\circ}{\sim}$	号	$\stackrel{\sim}{n}$	$\stackrel{\circ}{\sim}$	．	$\stackrel{\text { in }}{\sim}$	$\stackrel{\text { in }}{\sim}$	I	｜	｜	11
	\bigcirc	1	∞	∞	in	안	∞	∞	－	∞	1	1	｜	1
	$\stackrel{\sim}{\sim}$	1	$\stackrel{\circ}{N}$				－	－	－	$\stackrel{\circ}{\sim}$	$\stackrel{\text { İ }}{ }$	$\stackrel{\square}{N}$	$\stackrel{\text { N }}{\substack{0}}$	$\stackrel{\sim}{\sim}$
	∞	1	＾	in	∞	\cdots	\bigcirc	\cdots	m	\bigcirc	＋	m	∞	$\infty \quad \infty$
安	$\xlongequal{\sim}$												$\stackrel{\sim}{\sim}$	～${ }^{\text {N }}$
	$\stackrel{\square}{\square}$	$\stackrel{N}{\sim}$	$\underset{\sim}{\sim}$	\＃	$\xrightarrow{\sim}$	욱	$\stackrel{\sim}{n}$	$\stackrel{\sim}{\sim}$	－	$\stackrel{\square}{\square}$	$\stackrel{m}{m}$	$\stackrel{9}{9}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$
	$\underset{\sim}{\infty}$	\cdots	※	N	$\stackrel{\sim}{3}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	in	$\stackrel{\infty}{\text { in }}$	$\stackrel{9}{4}$	芯	$\stackrel{\infty}{\infty}$	
	$\stackrel{N}{2}$	$\stackrel{\infty}{\square}$	$\underset{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{0}$	$\stackrel{\square}{-}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{+}{\infty}$	$\stackrel{\infty}{\bullet}$	$\stackrel{\circ}{\text { N }}$	$\stackrel{\sim}{N}$	N	$\underset{\sim}{\sim} \stackrel{\infty}{\infty}$
	$\left.\right\|_{\substack{2 \\ \\ \hline}}$	Nợ	＋	Nָ	$\underset{\sim}{\text { N゙ }}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{0}{7}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{7}$	Nิ	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{7}$	奀	¢
		告N	$\underset{\text { 告m }}{ }$	菖			$\underset{\substack{\text { İn }}}{ }$	$\stackrel{\text { F}}{\substack{\text { an }}}$		芦	$\stackrel{\text { ¢ }}{\text { ¢ }}$	菑	¢ ¢ ¢	
			${ }^{*}$											

A－7

	$\begin{aligned} & \text { F} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \vec{m} \\ & \underset{=}{y} \end{aligned}$	$\stackrel{\stackrel{\circ}{ت}}{\rightrightarrows}$	$\begin{aligned} & \text { H゙ } \\ & \underset{\exists}{=} \end{aligned}$		$\begin{aligned} & \stackrel{1}{ت} \\ & = \end{aligned}$	$\begin{aligned} & \stackrel{n}{\ddot{n}} \end{aligned}$	$\begin{aligned} & \bar{ت} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{-} \end{aligned}$	$\begin{aligned} & \text { ザ } \\ & \ddot{O} \end{aligned}$	∞ $\stackrel{\circ}{\bullet}$	\cdots
	$\stackrel{\circ}{1}-$									$\vec{\alpha}$				
	$\stackrel{0}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	Nั	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{N}$	N	Nิ	ㄲ	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
	$\stackrel{\sim}{\sim}$	$\stackrel{\sqrt[1]{N}}{\sim}$	$\stackrel{\text { N }}{ }$	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\sim}$	$\underset{\sim}{\circ}$	$\stackrel{\sim}{\sim}-$	－	\longrightarrow	－	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\sim}$	N
	\sim	in	m	\bigcirc	\sim	\sim	\cdots		\longrightarrow	－	${ }^{+}$	\bigcirc	\bigcirc	\exists
	$\stackrel{\text { 우N }}{ }$	$\stackrel{\circ}{\sim}$	$\stackrel{\text { ㄱN }}{ }$	$\underset{\sim}{N}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\stackrel{\circ}{\sim}}{ }$	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{i}{\text { in }}$	NN	NN	ㄲ̇	$\stackrel{\text { N }}{\sim}$
	σ	\cdots	\bigcirc	\cdots	－	\sim	∞	N	\sim	$\underset{\sim}{\sim}$	σ	은	σ	\bigcirc
宫	N								\rightarrow	$\stackrel{14}{N}$				\rightarrow
	$\stackrel{\sim}{\sim}$	$\stackrel{\text { m }}{\sim}$	안	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	N	윽	$\stackrel{\circ}{2}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{-1}$	＊	8	$\stackrel{\sim}{0}$	$\stackrel{\sim}{\sim}$
	$\stackrel{\text { ® }}{\text { \％}}$	$\stackrel{\infty}{\sim}$	88	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\square}$	＊	N	\％	¢	～ٌ	出	N	¢	忘
	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{m}$	－	\＃	$\stackrel{\text { N }}{\text {－}}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{m}$ ．	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{N}$	$\stackrel{\text { in }}{\sim}$	$\stackrel{N}{-}$
	$\underset{\sim}{N}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{array}{r} \text { H } \\ \text { } \end{array}$	$\underset{\sim}{n}$	$\stackrel{\text { N10 }}{\substack{0}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\wedge}$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\text { N }}$	$\stackrel{N}{N}$	$\stackrel{\text { n }}{\substack{\text { in }}}$	$\underset{\substack{\text { ¢ }}}{ }$	$\stackrel{\text { N゙ }}{\text { N }}$
$\text { 9 } 9$	$\stackrel{\text { ĤA }}{\substack{\text { Hen }}}$	态亡	$\stackrel{\underset{\sim}{\circ}}{\substack{\infty \\ \hline}}$	$\stackrel{\text { No }}{\text { No }}$	$\underset{\substack{N \\ \multirow{2}{*}{\hline}\\ \hline}}{ }$	萖	華 N	啇N	㐌む		$\underset{\sim}{\underset{\sim}{A}} \underset{\sim}{N}$	$\stackrel{\wedge_{\dot{A}}^{N}}{N}$	$\stackrel{\text { No }}{\substack{\text { an }}}$	
				\cdots	\rightarrow									

易曷	$\stackrel{\circ}{\ddot{\sim}}$	$\begin{aligned} & \stackrel{\ddot{\rightharpoonup}}{\ddot{\sim}} \end{aligned}$	$\begin{aligned} & \text { 关 } \\ & \ddot{\sim} \end{aligned}$	$\stackrel{\sim}{シ}$	$\stackrel{\square}{\underset{\sim}{7}}$	$\underset{\sim}{\sim}$	
	$\underset{\mathrm{j}}{ } \longrightarrow$						
	$\underset{\sim}{\circ} \longrightarrow$						
	$\stackrel{\sim}{\sim}$	－	＋	$\stackrel{\text { U }}{\sim}$	1	＋	
	\pm	\pm	\sim	\pm	1	\bigcirc	\pm
	\％	～	$\stackrel{\sim}{\sim}$	$\stackrel{9}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{+}{\sim}$	
	$\stackrel{\sim}{\sim}$	\bigcirc					｜
夽	$\underset{\sim}{\square} \longrightarrow$						
芽苔	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\infty}{7}$	인	안	안	안	
	${ }_{4}^{\circ}$	＊	$\underset{\sim}{\sim}$	$\underset{4}{2}$	¢	＊	\％
	$\stackrel{\rightharpoonup}{\square}$	\％	๕	F	$\stackrel{\sim}{\sim}$	\％	
	＋	$\underset{\sim}{\sim}$	$\stackrel{\text { ç }}{\sim}$	ヘั	$\underset{\sim}{*}$	\％	N
震喜	気	気	产尔	参が	育尔		

曷	$\begin{array}{\|l\|l} \hline \infty \\ \underset{\sim}{2} \\ \dot{0} \end{array}$	$\begin{array}{\|l\|l} \tilde{N} \\ \infty \\ \infty \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{\circ}{2} \\ \dot{\infty} \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{\circ}{\ddot{0}} \\ \ddot{\circ} \end{array}$	$$	$\begin{aligned} & \vec{n} \\ & \stackrel{\theta}{\circ} \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{R}{2} \\ \ddot{0} \\ \hline 0 \end{array}$	$\begin{aligned} & \hline \underset{o}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \underset{\sim}{\circ} \end{aligned}$	N ※̈ O	$\begin{aligned} & \text { ٌ } \\ & \underset{\sim}{\circ} \end{aligned}$
	$\stackrel{\sim}{3}$	$\begin{aligned} & 7 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{array}{\|l} \stackrel{\rightharpoonup}{\mathrm{a}} \end{array}$	$\stackrel{\underset{1}{\mathrm{D}}}{2}$	$\begin{aligned} & \underset{\sim}{1} \\ & \vdots \end{aligned}$	$\begin{array}{\|l} 7 \\ \vdots \\ 0 \end{array}$	$\begin{array}{\|l} 7 \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & \underset{\sim}{1} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\stackrel{\rightharpoonup}{0}}$	$\stackrel{\rightharpoonup}{\hat{0}}$		$\stackrel{7}{\square}$
	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	윽	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{7}$	$\stackrel{\circ}{9}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
	N	ㅍN	İ	N	$\underset{\sim}{\sim}$	$\underset{\sim}{n}$	아N	－	$\stackrel{\circ}{\sim}$	in	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\sim}$
	$\stackrel{\infty}{\sim}$	\sim	응	$\stackrel{m}{\sim}$	\exists	\cdots	\cdots	∞	$\stackrel{\square}{-}$	$\stackrel{\sim}{\sim}$	N	앙
	N	N．	İNN	N	－	N	品		io		$\stackrel{\sim}{n}$	
	$\stackrel{\square}{-}$	\cdots	$\stackrel{m}{\sim}$	\cdots	아그․	\approx	$\stackrel{\sim}{\sim}$		\pm		$\stackrel{\square}{\sim}$	
¢	\＃	\pm	\pm	$\stackrel{\text { O }}{4}$	\pm	$\stackrel{\text { n }}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{n}$	$\stackrel{\sim}{\sim}$	\cong	$\stackrel{\square}{-1}$	\because
	ㅊ	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\underset{\sim}{8}$	앙	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	－	$\stackrel{\circ}{-}$	$\stackrel{\sim}{\sim}$	운	\bigcirc	$\stackrel{\text { n }}{\sim}$
	$\stackrel{\text { in }}{\text { in }}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\stackrel{m}{\text { in }}$	－	io	－	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	呺	$\begin{aligned} & \infty \\ & \text { in } \end{aligned}$	\cdots	io	¢
	$\stackrel{\sim}{\sim}$	$\stackrel{\text { in }}{ }$	츨	$\stackrel{\text {＋}}{+}$	$\stackrel{\square}{\square}$	$\stackrel{+}{\square}$	$\stackrel{\square}{-}$	$\stackrel{\infty}{\stackrel{n}{n}}$	芯	$\stackrel{\text { m }}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\square}{\square}$
	$\stackrel{\infty}{\square}$	$\underset{~}{7}$	\vec{i}	$\stackrel{\sim}{\infty} \underset{\sim}{\boldsymbol{\infty}}$	$\stackrel{\circ}{7}$	$\stackrel{m}{\underset{1}{m}}$	$\stackrel{\mathrm{n}}{\underset{1}{\mathrm{~N}}}$	$\underset{\substack{N \\ \\ \hline}}{ }$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\underset{\sim}{\mathrm{N}}$	$\left\lvert\, \begin{gathered} \infty \\ \underset{1}{\sim} \end{gathered}\right.$	
ETy	$\underset{\sim}{F}$			笽	$\begin{aligned} & \text { 笛in } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Fim } \\ \text { 畄合 } \end{array}$			若	锚	氙 ${ }^{\text {¢ }}$	氙す

$$	$\begin{array}{\|l} \hline \stackrel{\tilde{\omega}}{\dot{\circ}} \end{array}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { } \\ & \stackrel{\infty}{\vdots} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { \#̈ } \\ & \stackrel{3}{\theta} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{n} \\ & \stackrel{0}{-} \end{aligned}$	$\begin{aligned} & \stackrel{\ddot{U}}{\ddot{ت}} \end{aligned}$	$\stackrel{\circ}{\square}$	$\stackrel{\text { 年 }}{\rightrightarrows}$	$\stackrel{9}{⿻}$	$\stackrel{\text { H }}{\underset{\sim}{\#}}$
	$\stackrel{\underset{1}{1}}{\stackrel{\rightharpoonup}{9}}$		$\stackrel{\underset{1}{\mathrm{D}}}{1}$		$\stackrel{N}{\square}$		$\underset{\sim}{\mathrm{I}}$	$\underset{\underset{\sim}{\mathrm{I}}}{\underset{\sim}{2}}$		$\stackrel{7}{1}$		$\stackrel{\rightharpoonup}{\square}$
	告	$\underset{\sim}{\text { N }}$	ํN	～	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\stackrel{\text { N® }}{ }$	－	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N
		$\underset{\sim}{\infty}$		$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\text { N }}$	$\stackrel{i}{\sim}$	$\stackrel{\bigcirc}{\sim}$	$\stackrel{\text { ®}}{\text { N }}$	$\stackrel{\text { ® }}{ }$	$\stackrel{\circ}{\sim}$	$\underset{\sim}{\infty}$	
		앙		\cong	$\stackrel{\text { 간 }}{ }$	$\stackrel{\infty}{\square}$	～	$\stackrel{\text { N }}{ }$	～	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	
		$\stackrel{8}{\sim}$	$\underset{\sim}{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\sim}$	$\underset{\sim}{\infty}$	$\stackrel{\bigcirc}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ㅇN }}{\sim}$	
		N	$\stackrel{\circ}{\sim}$	$\vec{\sim}$	오N	N	$\stackrel{\text { 강 }}{ }$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { 간 }}{ }$	
$\underbrace{\text { O }}_{\substack{\dot{0} \\ \text { ¢ }}}$	\pm	\cong	\cong	\approx	$\xlongequal{ }$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$
	$\frac{\circ}{\mathrm{m}}$	$\underset{\sim}{\text { in }}$	$\stackrel{\circ}{\text { in }}$	$\stackrel{i}{\sim}$	윽	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\sim}$	in	$\stackrel{i}{\square}$	운	$\underset{\sim}{\text { ar }}$	\％
	\％	N	i্n	$\stackrel{\sim}{\sim}$	$\underset{\sim}{n}$	$\stackrel{N}{N}$	N	$\stackrel{\sigma}{i n}$	$\stackrel{\mathrm{F}}{\mathrm{i}}$	$\stackrel{m}{i n}$	$\stackrel{\text { in }}{ }$	ir
	$\stackrel{N}{\sim}$	$\underset{\sim}{\text { N }}$	$\stackrel{\sim}{\sim}$	$\stackrel{m}{\sim}$	～	＋	$\stackrel{\bullet}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\circ}{\mathrm{N}}$	－	$\stackrel{\circ}{7}$
	荷	$\underset{\substack{\underset{\sim}{n} \\ \hline}}{ }$	$\begin{aligned} & \text { + } \\ & \ddagger \end{aligned}$	$\underset{\substack{\sigma \\ \vdots \\ \hline}}{ }$	$\underset{\substack{\text { H } \\ \text { + } \\ \hline}}{ }$	$\stackrel{\infty}{\substack{1}}$	$\stackrel{\circ}{7}$	$\stackrel{N}{\sim}$	O	$\begin{gathered} N \\ \underset{Y}{+} \\ \hline \end{gathered}$	$\stackrel{せ}{\stackrel{+}{1}}$	$\stackrel{+}{\text {＋}}$
cid				$\tilde{\text { Ha }}^{\infty}$	Fio		$\underset{\sim}{\underset{M}{A}} \stackrel{\rightharpoonup}{2}$		$\underset{\substack{\mathrm{A}}}{\text { N }}$	$\stackrel{\text { H̀ }}{\hat{M}}$	$\underset{M}{\underset{\sim}{A} n}$	㔖号

	$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{+}{+}}$	\tilde{N} $\stackrel{\sim}{\circ}$	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{0}{\circ} \end{aligned}$	$\stackrel{\sim}{n}$ $\stackrel{\sim}{i}$	$\left\lvert\, \begin{gathered} n \\ \ddot{\ddot{o}} \\ \ddot{o} \end{gathered}\right.$	$\begin{array}{\|l\|} \hline \stackrel{O}{\circ} \\ \ddot{\circ} \end{array}$	$\begin{aligned} & N \\ & \underset{\ddot{\theta}}{\sim} \end{aligned}$	$\stackrel{0}{\ddot{0}}$	$\begin{aligned} & \bar{\sim} \\ & \text { ®̈ } \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & \stackrel{n}{\infty} \\ & \ddot{\infty} \end{aligned}\right.$	$\begin{array}{\|} \underset{\sim}{\underset{\sim}{0}} \\ \ddot{\circ} \end{array}$	$\left\lvert\, \begin{aligned} & \tilde{N} \\ & \substack{\infty \\ \infty \\ \infty} \end{aligned}\right.$
	$\stackrel{\infty}{\vdots}$	$\stackrel{\infty}{1}$	$\stackrel{\infty}{1}$	$\underset{\sim}{1}$	$\stackrel{\infty}{\square}$	$\underset{\substack{\infty \\ \underset{\sim}{1} \\ \hline}}{ }$	$\frac{\infty}{\vdots}$	$\stackrel{\infty}{\stackrel{\infty}{\square}}$	$\stackrel{\infty}{1}$	$\frac{\infty}{1}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$
	$\stackrel{n}{\sim}$	$\stackrel{\sim}{m}$	$\stackrel{\circ}{9}$	$\stackrel{\text { \％}}{\sim}$	꾹	욲	$\stackrel{\text { in }}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { 앆 }}{ }$	$\stackrel{\text { 까﹎ }}{ }$	욱
	악	\bigcirc		악		in					\bigcirc	
	\bigcirc	\bigcirc	\bigcirc	n	∞	\sim		\sim	σ	\cdots	＋	
	\bigcirc	\bigcirc	\bigcirc			¢	\bigcirc				$\begin{aligned} & \text { in } \\ & \mathrm{m} \end{aligned}$	$\stackrel{\sim}{\sim}$
	\bigcirc	\cdots	\bigcirc	\sim	∞	\bigcirc	m	∞	\sim		\bigcirc	\bigcirc
	\square	＋	＋	n	in	in	n	in	¢	in	in	in
	$\stackrel{n}{\mathrm{~N}}$	$\stackrel{n}{n}$	$\stackrel{n}{\sim}$	等	\＃	年	$\stackrel{1}{4}$	$\stackrel{\square}{4}$	\％	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\circ}{-}$
	$\stackrel{\sim}{\sim}$	～	－	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{i n}{n}$	$\stackrel{\sim}{\sim}$	N	in	io
	$\stackrel{\sim}{\square}$	\cdots	io	－	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ¢ }}{\text { c }}$	$\stackrel{\mathrm{m}}{\mathrm{~N}}$	$\stackrel{\sim}{\sim}$	$\stackrel{7}{\sim}$	$\stackrel{\sim}{\sim}$
	N	$\underset{\sim}{\sim}$	～	$\underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	＊	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{N}$	～	N	ה	$\underset{\sim}{\text { N }}$
品志品	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\stackrel{1}{\mathrm{~m}}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{m}}^{N} \end{aligned}$	$\hat{o}_{\mathrm{D}}^{\mathrm{m}}$		$\stackrel{\hat{a}}{\mathrm{~m}}^{\mathrm{in}}$	$\underset{\substack{\stackrel{N}{\circ} \\ \stackrel{1}{2} \\ \hline}}{ }$	$\begin{array}{\|c} \hat{O} \\ \vdots \\ i \end{array}$	$\hat{0}_{\substack{\infty}}$	$\stackrel{\text { oñ }}{\substack{0 \\ \hline}}$	$\left\lvert\, \begin{aligned} & \text { Bo } \\ & \text { Do } \\ & \text { in } \end{aligned}\right.$	$\begin{aligned} & \text { Noे } \\ & \text { in } \end{aligned}$	®o ¢ N
	$\begin{aligned} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{aligned}$											

Configuration	$\begin{aligned} & \text { Run } \\ & \text { Label } \end{aligned}$	Aircraft Displacement from owe (ft)	Aircraft Altitude Abreast of Tower (it)	Aircraft Weight (1000 1b)	Aircraft Speed (knots)	Temp. (${ }^{\circ} \mathrm{C}$)	Initial Wind Speed (mph)	Initial Wind Angle (deg from true N) true N)	Final Wind Speed (mph)	$\begin{gathered} \text { Final } \\ \text { Wind } \\ \text { Angle } \\ \text { (deg from } \\ \text { true N) } \\ \hline \end{gathered}$	Aircraft Heading (deg from mag. N)	$\begin{gathered} \text { Month- } \\ \text { Day } \\ \text { (1972) } \end{gathered}$	$\begin{aligned} & \text { Time } \\ & \text { (EDT) } \end{aligned}$
Holding, level flight, all engines same power	$\begin{gathered} \text { B707 } \\ 13 \end{gathered}$	257	215	237	220	6	5	20	6	350	130	10-18	09:33
Holding, level flight, all engines same power	$\begin{gathered} \mathrm{B} 707 \\ 14 \end{gathered}$	288	231	236	225	6	6	20	9		130	10-18	09:37
Holding, level fight, all engines same power	$\begin{gathered} \mathrm{B} 707 \\ 15 \end{gathered}$	248	195	235	220	6	8		8	10	130	10-18	09:41
Landing, outboard engine away from tower at idle (Vortex 2)	$\begin{gathered} \mathrm{B} 707 \\ 16 \end{gathered}$	275	221	234	145	6	10		7	10	130	10-18	09:45
Landing, outboard engine away from tower at idle (Vortex 2)	$\begin{gathered} \mathrm{B} 707 \\ 17 \end{gathered}$	271	191	233	145	6	10		8		130	10-18	09:50
Landing, outboard engine away from tower at idle (Vortex 2)	$\begin{gathered} \mathrm{B} 707 \\ 18 \end{gathered}$	275	209	231	209	6	8		9		130	10-18	09:54
Landing, outboard engine toward tower at idle (Vortex 1)	$\begin{gathered} \text { B707 } \\ 19 \end{gathered}$	249	196	230	145	6	9		8		128	10-18	09:57
Landing, outboard engine toward tower at idle (Vortex 1)	$\begin{gathered} \text { B707 } \\ 20 \end{gathered}$	252	156	229	145	6	8		8		130	10-18	10:02
Landing, outboard engine toward tower at idle (Vortex 1)	$\begin{gathered} 8707 \\ 21 \end{gathered}$	278	150	227	145	6	8				127	10-18	10:06
Take off, swoop, full power	$\begin{gathered} \mathrm{B} 707 \\ 22 \end{gathered}$	277	182	226	170	7	4		6	350	130	10-18	10:10
Take off, swoop, full power	$\begin{gathered} \mathrm{B} 707 \\ 23 \end{gathered}$	269	161	225	170	7	8	10	6		130	10-18	10:15
Take off, swoop, full power	$\begin{gathered} \mathrm{B} 707 \\ 24 \end{gathered}$	270	158	223	172	7	6	20			130	10-18	10:22

	$\sqrt[\ddot{\ddot{Z}}]{\square}$	$\begin{aligned} & \underset{7}{7} \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{\sharp} \\ \end{gathered}$	$\stackrel{\infty}{\underset{\rightrightarrows}{=}}$	$\stackrel{N}{\rightrightarrows}$	$\begin{aligned} & \stackrel{0}{7} \\ & = \end{aligned}$	$\stackrel{7}{\rightrightarrows}$	$\begin{aligned} & \text { 等 } \end{aligned}$	$\stackrel{\stackrel{\circ}{\square}}{\underset{7}{7}}$
	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{\square}}$	$\stackrel{\infty}{\stackrel{\infty}{a}}$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\stackrel{\infty}{\stackrel{\infty}{-}}$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\stackrel{\infty}{\stackrel{\infty}{1}}$	$\frac{\infty}{\vdots}$	$\stackrel{\infty}{\stackrel{1}{1}}$
	$\stackrel{\circ}{\square}$	$\stackrel{\text { 으﹎ }}{ }$	$\stackrel{\text { 으﹎ }}{ }$	윽	$\stackrel{\circ}{\text { 각 }}$	$\stackrel{\text { 악 }}{ }$	$\stackrel{\sim}{\sim}$	꾹	$\stackrel{\circ}{m}$
		\bigcirc		$\stackrel{\sim}{\sim}$	\％	8			
	＊	∞	in	\bullet	∞	＋	ぃ		
		\sim			\cong	\％	8		
	\cdots	\bigcirc	＋	${ }^{*}$	\bigcirc	m	N	ぃ	
官	Ξ	こ	\exists	\exists	$=$	\exists	σ	σ	σ
	$\stackrel{\sim}{\text { a }}$	$\stackrel{\sim}{\text { in }}$	N	－	N	N	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{4}$	
析	$\underset{\sim}{\mathrm{N}}$	－	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\text { N }}$	$\stackrel{\stackrel{\circ}{\text { N }}}{ }$	$\stackrel{\circ}{\text { N }}$	$\underset{\sim}{\text { in }}$	䎟	へָ
	$\stackrel{\square}{\infty}$	$\stackrel{\infty}{\sim}$	$\stackrel{\stackrel{\circ}{\sim}}{ }$	$\underset{\sim}{\mathrm{N}}$	岕	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty}$	$\stackrel{-}{-}$	$\stackrel{8}{9}$
	N	$\stackrel{\stackrel{\circ}{*}}{\sim}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{N}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{N}$	－	$\stackrel{\text { n }}{\sim}$	$\underset{\sim}{\text { N }}$
号运	$\underset{\mathrm{m}}{\mathrm{C}}$	$\begin{aligned} & \text { No웅 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \tilde{M} \\ & \end{aligned}$		$\begin{aligned} & \text { ion } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { op } \\ & \text { in } \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{m}} \overline{\mathrm{o}}$	$\begin{aligned} & \hat{N} \\ & \hat{0} \tilde{m} \\ & i \end{aligned}$	$\stackrel{\text { Noेm }}{\substack{\text { m }}}$

Configuration	Run Label	Aircraft Displacement from Tower (ft)	Aircraft Altitude Abreast of Tower (ft)	Aircraft Weight (1000 1b)	Aircraft Speed (knots)	Temp. (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Initial } \\ & \text { Wind } \\ & \text { Speed } \\ & \text { (mph) } \end{aligned}$	Initial Wind Angle (deg from true N$)$	Final Wind Speed (mph)	Final Wind Angle (deg from true N)	Aircraft Heading (deg from mag. N)	$\begin{gathered} \begin{array}{c} \text { Month- } \\ \text { Day } \end{array} \\ \text { (1972) } \end{gathered}$	$\begin{aligned} & \text { Time } \\ & \text { (EST) } \end{aligned}$
Holding, level lifght, all ergines same power	$\begin{gathered} B 707 \\ 34 \end{gathered}$	257	191	264	225	6	7				130	11-1	07:36
Holding, level flight, all engines same power	$\begin{gathered} 8707 \\ 35 \end{gathered}$	303	205	263	218	6	6		6	350	130	11-1	07:40
Landing, level flight, all engines same power	$\begin{gathered} 8707 \\ 36 \end{gathered}$	276	212	262	150	6	7		7		126	11-1	07:44
Landing, level flight, all engines same power	$\begin{gathered} \text { B707 } \\ 37 \end{gathered}$	294	197	261	148	5	5	350			128	11-1	07:49
Landing, outboard engine away from tower at idle (Vortex 2)	$\begin{gathered} \mathrm{B} 707 \\ 38 \end{gathered}$	276	204	258	148	5	5	310			130	11-1	07:58.
Landing, outboard engine away from tower at idle (Vortex 2)	$\begin{gathered} \text { B707 } \\ 39 \end{gathered}$	278	229	256	146	6			7		130	11-1	08:08
Landing, outboard engine toward tower at idle (Vortex 1)	$\begin{gathered} \mathrm{B707} \\ 40 \end{gathered}$	298	218	254	148	5	9	330	8		126	11-1	08:07
tanding, outboard engine toward tower at idle (Vortex 1)	$\begin{gathered} \mathrm{B707} \\ 41 \end{gathered}$	276	216	250	143	5			7	350	128	11-1	08:12
Takeoff, level flight, all engines same power	$\underset{42}{\mathrm{~B} 707}$	241	200	250	145	5	7		5		130	11-1	08: 18
Take off, level flight, all engines same power	$\begin{gathered} \mathrm{B} 707 \\ 43 \end{gathered}$	269	219	249	148	5	6		6		130	11-1	08:23
Take off, swoop, kull power	$\begin{gathered} \mathrm{B} 707 \\ 44 \end{gathered}$	263	145	248	158	6					130	11-1	08:27
Take off, swoop, full power	$\begin{gathered} \text { B707 } \\ 45 \end{gathered}$	250	180	246	158	5	7		5		130	11-1	08:32
Holding, level flight, all engines same power	$\begin{gathered} B 707 \\ 46 \end{gathered}$	251	240	230	218	6	2		4		128	11-1	09:31
Holding, level flight, all engines same power	$\begin{gathered} B 707 \\ 47 \end{gathered}$	250	190	229	210	5	2		2		126	11-1	09:36

Configuration	Run Label	Aircraft Displacement from Tower (ft)	Aircraft Altitude Abreast of Tower (ft)	$\begin{aligned} & \text { Aircraft } \\ & \text { Weight } \\ & (1000 \mathrm{lb}) \end{aligned}$	Aircraft Speed (knots)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Initial Wind Speed (mph)	Initial Wind Angle (deg from true N)	Final Wind Speed (mph)	Final Wind Angle (deg from true N)	Aircraft Heading (deg from mag. N)	$\begin{gathered} \text { Month- } \\ \text { Day } \\ (1972) \end{gathered}$	Time (EST)
Landing, level flight. all engines same power	$\begin{gathered} B 707 \\ 48 \end{gathered}$	277	215	228	137	5	2		4	350	128	11-1	09:40
Landing, level flight, all engines same power	$\begin{gathered} \mathrm{B} 707 \\ 49 \end{gathered}$	272	206	227	134	6	4				126	11-1	09:44
Landing, outboard engine away from tower at idle (Vortex 2)	$\begin{gathered} \mathrm{B} 707 \\ 50 \end{gathered}$	240	201	226	133	7	2				128	11-1	09:48
Landing, outboard engine away from tower at idle (Vortex 2)	$\begin{gathered} \text { B707 } \\ 51 \end{gathered}$	278	219	223	135	6	3		4		130	11-1	09:58
Landing, outboard engine toward tower a idle (Vortex 1)	$\begin{gathered} B 707 \\ 52 \end{gathered}$	256	219	221	134	6			4		127	11-1	10:03
Landing, outboard engine toward tower at idle (Vortex 1)	$\begin{gathered} \text { B707 } \\ 53 \end{gathered}$	239	212	219	131	6	2		3		126	11-1	10:07
Take off, level flight, all engines same power	$\begin{gathered} \mathrm{B} 707 \\ 54 \end{gathered}$	285	184	218	135	7	5				127	11-1	10:12
Take off, level flight, all engines same power	$\begin{gathered} \mathrm{B} 707 \\ 55 \end{gathered}$	270	213	216	134	6	4	340		*	127	11-1	10:17
Take off, swoop, full power	$\begin{gathered} \text { B707 } \\ 56 \end{gathered}$	285	164°	215	132	7					1264	11-1	10:23
Take off, swoop, full power	$\begin{gathered} \text { B707 } \\ 57 \end{gathered}$	281	162	213	135	6	5		12		128	11-1	10:27
Holding, level flight, all engines same power	$\begin{gathered} \text { B707 } \\ 58 \end{gathered}$	271	177	202	198	6	4	340	3		128	11-1	11:12
Holding, level flight, all engines same power	$\begin{gathered} \text { B707 } \\ 59 \end{gathered}$	293	206	201	185	6					130	11-1	11:16
Landing, level flight, all engines same power	$\begin{gathered} B 707 \\ 60 \end{gathered}$	340	206	200	131	6			4		128	11-1	11:20
Landing, level flight, all engines same power	$\begin{gathered} \text { B707 } \\ 61 \end{gathered}$	273	220	199	124	7					130	11-1	11:25
Holding, level flight, all engines same power	$\begin{gathered} \mathrm{B} 707 \\ 63 \end{gathered}$	250	150	192	290	6					130	11-1	11:33

Appendix B

PROBABLE STABILITY CONDITIONS PREVALENT DURING SELECTED NAFEC FLYBYS

AT ATLANTIC CITY, N.J.
 I
-

Near neutral atmospheric buoyancy or stability conditions are likely to prevail 80% of the time at any given station. At night, during and very shortly after sunrise, an inversion layer usually exists in the surface boundary layer (region of shear stress almost constant with height). Thus, the near neutral conditions would tend toward the stable state during this period. This effect is due to a massive heat exchange by horizontal convection in the upper atmosphere as opposed to a negative to very small positive temperature rise in the surface boundary region. In its relatively non-dynamic state, the surface boundary layer will only experience a large temperature rise when the surface itself is well exposed to an appreciable solar radiation flux. Shortly after sunrise the neutral conditions will tend more toward the unstable state due to the surface heating and the resultant vertical convective processes. Heat exchange at higher altitudes is mostly a function of mass exchange due to horizontal pressure gradients and the earth's rotation and are relatively independent of the surface characteristics when the region of interest is confined to such a small scale as an airport. Radiosonde data taken at these higher altitudes will exhibit lapse rates which somewhat arbitrarily reverse signs and cover a somewhat larger variation in magnitudes.

In Lissaman, etal.(Ref. 5), the Pasquill classes were categorized in terms of various lapse rates. In addition, a qualitative description of meteorological conditions likely to be present during the various' Pasquill defined degrees of stability are given.

The tables presented in this appendix define the classes which would exist under the Pasquill criteria during the periods of interest (if the necessary data are available). The classes are suggested for: (1) the general meteorological conditions (from NOAA surface weather tables); (2) the lapse rate from 23 to 140 feet (from NAFEC tower data); (3) the lapse rate from approximately 200 to approximately 4000 feet (from radiosonde data); and (4) the lapse rate from 140 to approximately 200 feet (from NAFEC tower data in conjunction with the radiosonde data).

General meteorological conditions indicate that the expected stabilities for a given time of day were present in each case with the possible exception of the unusual trend of 17 October 1972. The tendency of the buoyancy conditions to remain more nearly neutral throughout the morning than normal may be explained by the air mass modification created by the impending frontal passage. The sharp temperature contrasts of 17 October and 18 October support this argument.

The lapse rates from 23 to 140 feet appear to be anomalous in magnitude and, in some cases, sign for all periods of interest. This phenomenon is possibly due to instrument error or high degree of inaccuracy.

As discussed previously, the lapse rates from approximately 200 to approximately 4000 feet do not give a true picture of stability. Even if linear trends of temperature change with height were exhibited these trends would most probably be inapplicable to the vertical region of interest.

Although the lapse rates between 140 feet and approximately 200 feet would be of value in establishing the conditions applicable to the vortex problem, the values computed are unrealistic due to the possible inaccuracy of the tower data and the fact that the lowest level radiosonde measurement is unreliable most of the time.

						\Uparrow A 出 ${ }^{\text {n }}$ ○筸登 已㤩 ○ 응
General Meteorological Conditions						
	$\begin{array}{ll} 8 & 8 \\ \ddot{-} & \ddot{9} \\ - & \ddot{m} \\ 1 & 1 \end{array}$	$\begin{aligned} & \circ \\ & \hline-1 \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & 0 \\ & i \end{aligned}$
$\begin{aligned} & \stackrel{\rightharpoonup}{M} \\ & \stackrel{N}{\sim} \\ & \underset{\sim}{\circ}= \end{aligned}$	$\begin{array}{ll} 0 & N \\ \hdashline & N \\ \infty & 1 \end{array}$		$\underset{\sim}{\sim}$	$\begin{gathered} \underset{1}{\prime} \\ \alpha \end{gathered}$		

						．
				介ゅ		
	$\begin{aligned} & \circ \\ & \ddot{7} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & \dot{\circ} \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & \ddot{\ddot{7}} \\ & \boldsymbol{1} \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\circ}{0} \\ \stackrel{1}{\mathrm{I}} \end{gathered}$	$\begin{aligned} & 8 \\ & 0 \\ & \ddot{0} \\ & i \end{aligned}$	$\begin{gathered} \stackrel{8}{\circ} \\ \stackrel{1}{\mathrm{I}} \\ i \end{gathered}$
$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{N} \\ & \stackrel{O}{\sigma} \end{aligned}$	$\underset{\sigma}{ \pm}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & \sigma \end{aligned}$			$\begin{aligned} & \underset{\sim}{1} \\ & 1 \end{aligned}$	

B 0 0 \vdots 1 0 0 					
$\begin{aligned} & \hline \text { 总易 } \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 8 & \stackrel{o}{i} \\ \dot{i} & i \\ i & i \end{array}$	$\begin{aligned} & \text { ö } \\ & \text {̈̈⿱⿵人一口⿴囗十 } \\ & i \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\ddot{2}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{7} \\ & \stackrel{i}{7} \end{aligned}$
	$\stackrel{\text { N }}{\substack{\text { a }}}$				

				介口出漚 － ○灵兌 i 10 等	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & H \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					
	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\infty} \\ & \infty \\ & i \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \dot{\circ} \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{0}{i} \\ & \stackrel{i}{i} \end{aligned}$	
	$\stackrel{\rightharpoonup}{\square}$				

Appendix C
DESCRIPTION OF OUTPUT PLOTS OF WAKE VORTEX TRANSPORT COMPUTER PROGRAM

\qquad
\square

Following is a brief description of the output plots (SC-4020) for the wake vortex transport computer program. The output consists of 14 pages of plots shown on pages $C-3$ through $C-16$. The first page represents a summary of input flags as used for analysis of Run 4 on 18 October 1972, and also the first portion of the wind field input description. All input flags are defined via comment cards in the computer program and are given in Appendix D for easy reference. The wind field is defined by specifying the number of altitudes to be used in the curve fitting algorithm followed by a table defining the wind speed for both the horizontal and vertical versus altitude. This table is concluded on the second page. Next is the specified reference speed and altitude along with the exponent defining the power law curve fit required to represent the wind field over a continuous height. Following this is a temperature-altitude table for stability and density calculations. Page C-5 defines the variables for the temperature-altitude curve fit, the wind shear model parameters, the buoyancy model parameters, and a description of the ground wind array and sensor type. Page C-6 lists aircraft information required for the transport calculations and some of the basic quantities calculated in the program.

The display of the vortex tracks is initiated in the plot on page C-7. This plot is a cross sectional vortex track of altitude versus lateral distance referenced to the centerline of the aircraft flight path. Each plotting symbol indicates a time as defined by the user specified time increment. Page C-8 represents a cross sectional vortex track corresponding to the desired experimental condition. The current setup represents the NAFEC conditions with the lateral distance coordinate referenced to the NAFEC tower. The plotting characters initiating at the simulated aircraft are predicted values with the asterisks and X s representing the starboard and port vortices, respectively. The measured vortex position as determined from the photographs are shown superimposed on the predicted tracks with the S and P corresponding to the starboard and port vortices, respectively. The solid line represents constant time lines and can be calibrated by the caption at the top of the plot.

Page C-9 is a time versus altitude track comparing predicted and photographic measurement. In the case for no wind shear, equal circulation and level flight, the starboard and port predictive tracks are identical as indicated by the double plotting character. Here again the S and P represent starboard and port vortex position obtained by measurement. Next is the reduced ground wind track comparing predicted and measured vortex positions. The lines represent predicted vortex position versus time with the S and P referring to photographic measurement and R and L referring to ground wind measurement of the right and left vortex, respectively. Page C-Il is the induced velocity (predicted) as a function of time for each ground wind sensor including a specified sensor response. The peaks are the predictive points shown in the previous plot. The remaining plots relate to either the wind field or the atmospheric characterization.

The plot on page $C-12$ is the measured (symbols) wind velocity for the five tower levels and the line through the data is the least square power law representation of the wind profile. Page C-13 shows the variation of wind direction with altitude for both the measured (symbols) and the least square quadratic representation (solid line) of the data. Pages C-14 and C-15 show the component wind profile for the lateral and longitudinal directions, respectively, for both the measured data and that calculated from the least square information of the previous two plots. The final plot (page C-16) represents temperature, pressure and density profiles for the altitude range of interest computed from the temperature data measured on the tower and the recorded surface pressure measured by NOAA,

RUN 48707 WIND PROFILE

sinfut					
ISIM	$=$	\$1			
STIME	$=$. $000000505+00$			
FTIME	$=$. $16090900 \mathrm{E}+03$			
OTIME	$=$	-20000000E+01			
JPRINT	$=$	+1			
SpEED	$=$	- $21250000 \mathrm{E}+03$			
WEIGHT	$=$	-24700000E+96			
WSFAN	$=$. $14580009 \mathrm{E}+03$			
Ifloti	$=$	+1			
IPLOT2	$=$	+3			
Ifunch	$=$	+1			
LINE	$=$	+1			
OTLINE	$=$.60000000E+01			
ISCALE	$=$	+1			
YR	=	. $400000950+03$			
YL	$=$	-.60000000E+03			
$2 T$	$=$.25000000E+03			
FHIN	$=$	-. 30000000E+02			
PMAX	$=$. $300050008+02$			
SENO					
SVOR T					
Vor	$=$. $00000000 \mathrm{E}+00$			
ISIGHT	$=$	+0			
SENC					
SWIMDS					
JWIND	$=$	+3			
SWINDT	=	. $000000005+00$			
WINCD	$=$. $00000000 \mathrm{E}+00$			
NW	=	+5			
ALT	=	. $23000000 \mathrm{E}+02$,	. $45000000 \mathrm{E}+02$,	. $70000009 E+02$,	-10000000E+03,
		. $14000000 \mathrm{E}+03$,	. 20000000E+03,	. O00000000E+00,	. $000000008+00$,
		. $00000000 \mathrm{E}+00$,	. $0000000005+001$. $000000000 \mathrm{E}+00$.	. $000000000 \mathrm{E}+00$,
		. $00000000 \mathrm{E}+00$,	.000000000E+00,	. O00000000E+00,	. $000000005+00$,
		. $00000000 \mathrm{E}+00$,	. $000000000 \mathrm{E}+00$,	. O0000000E+00,	. O00000000E+00,
		. $00000000 \mathrm{E}+00$,	. $000000000 \mathrm{E}+00$,	. $000000000 \mathrm{E}+00$,	.00000000E+00;
		. $00000000 \mathrm{E}+00$,	. $000000000 \mathrm{E}+00$,	.00000000E +00 ,	. $00000000 \mathrm{E}+00$,
		. $00000000 \mathrm{E}+00$,	. $000000000+00$		
WSPEED	$=$. $53000000 \mathrm{E}+01$,	. $59000000 \mathrm{E}+01$,	. $6600000005+01$,	. $10000000 \mathrm{E}+02$,
		. $13000000 E+02$,	. $13000000 \mathrm{E}+02$,	. $0000000005+00$,	. $00000000 \mathrm{~F}+00$,
		. $00000000 \mathrm{E}+00$,	. $00000000 \mathrm{E}+001$. $000000000+00$,	. $000000008+00$,

		- 00900000etos,	- 0 googosomajor	. 900 gogogetogo	. 9 gogagagetog,
		- 000509 gje	-	- 0 gojogogetog,	. OGOOOSOEE+50,
		- 0 000000getog,	-	. 0 gogogosetog,	, gogogagaetog,
		-60500000E+00,	- 00000500etob,	.00000000etog,	.00000000etog,
		. 5 gegogesetig,	-		
WCIREC	$=$.31770009E+53,	. 3324000ceto3,	. 3569505 St 53 ,	$.330800005+531$
		. $12100009 \mathrm{E}+\mathrm{S} 2$,	. 12100000E+02,	- cosogesosetag,	- ogosogogetog,
		- DO009000E+60,	-	- 0 gooujogetog,	. ogocogojectog,
		- $00500000 \mathrm{E}+00$,	-00000000E+50,	-00000000etog,	-
		- OGS00000E+50,	- 00000000e+00,	- 0 dogogogetog,	.
		- odogogogetog,	-	- 0 goojogetogi	. 0 gogocojetog,
		- 000sgogaetan,	- ag00000getoo,	- Sosososeetan,	.00900000et00,
		. $0000000 \mathrm{ge+0g}$,	. ogogogogetog	-	
WSV	$=$	- 000g0000e+00,	-000000goetog,	- 0 gocogogetog,	. Qugogeogetog,
		-000000gge +05 ,	- 0 gogogogetog,	-00000500E+00,	. $000000008+00$,
		-00000000E+0j,	-0000gojoctoo,	- 0 gogooogetog,	. 0 agogoogetog,
		-09900000E+00,	-0000gogogetog,	. ogogoooserag,	.00005000et55,
		- Oosocosoentog,	. $00000000 \mathrm{~g}+00$,		.0000000getog,
		.00000000e+00,	. $000000008+00$,	.00000000etog,	.00000050etog,
		-00000000e+00,	.00000005e+00,	. 00:00000E+09,	. 0 O000000E+90,
		- 0 gjogajgetog,	. 0 googojogetog		
Altr	$=$. 23 500000E+52			
USFF	$=$				
CFOWER	$=$	-27009g00e +00			
NFOLY	$=$	+2			
COEF	=	.00000000e+50,	.00googooberon,	. $0000000005+50$,	.00000000e+00,
		.00000090e+00,	.00000000et00,	- 05000000E+00,	.000gogogetog,
		.0000g000E+00			
PRESSG	$=$. $102630008+04$			
JTEMP	$=$	+2			
NA	$=$	+5			
ALTIT	$=$. 23009000E+02,	. $45000000 \mathrm{ta2}$,	. $70000000 \mathrm{E}+02$,	.10000000E+03,
		. $14000000 \mathrm{E}+03$,	. 20GOUSGDE + D4,	. 20000500E+04,	. $200000008+04$,
		-20000000E+04,		. 2000000get04,	.20005000E+04,
		-20000000E+04,	. 20000000E+04,	. $2000000005+54$,	.200000goetor ,
		.20000000E+04,	.20000000E+04,	. 20000000E+D4,	.20000000E+04,
		.20000000E+04,	.20000000E+04,	. 20000000e+04,	.2000j00ge+04,
		.20000000E+04,	. 20000000E+04,	. 20050900E+04,	.20090000E+04,
		-20000000E+04,	.20000000E+04		
tehp	$=$. $29000000 \mathrm{E}+01$,	. 28000000E+01,	. $290000005+01$,	. $280000000+01$.
		.27000000E+01,	. 20000000E+02,	.20000000E+02,	.20000000E+02,
		.20000000E+02,	. 20000000E+02,	.20000000E+02,	.20000000E+02,
		.20000000E+02,	. 20000000E+02,	. 20000000E+02,	.20000000E+02,
		. $200000005+02$,	.20000000E+02,	. 20000000E+02,	.20000000E+02,

		. $20000000 \mathrm{E}+02$,	. 200000005 E (02,	-20000000E+02,	
		.20000000E+02,	. $200000050 \mathrm{E}+52$,	. $25000000 \mathrm{E}+02$,	. $20000500 \mathrm{E}+02$,
		.20900000E+52,	.200005005+02		
NPOLYT	$=$	+1			
COEFT	$=$. $00000000 \mathrm{E}+00$,	. $00000000 \mathrm{e}+00$,	. $000000050+00$,	. $00000005 \mathrm{t}+00$,
		. $00000005 \mathrm{E}+00$,	. $000900008+00$,	. $05005050 \mathrm{C}+00$,	. $000000005+09$,
		. $00000000 \mathrm{E}+50$			
JFOTEN	$=$	+1			
			,		
SENC					
\$SHEAR					
NROWS	$=$	+0	.		
NCOLS	$=$	+1			
HEIGHT	$=$. $00000000 \mathrm{E}+50$			
WIDTH	$=$. $00000000 \mathrm{E}+00$			
F	$=$.00000000E+00,	. $00000000 \mathrm{E}+60$,	. $00000000 \mathrm{E}+05$,	.00000000E +00
SENO					
sbuoy					
SMIX	$=$. $000000008+00$			
ZCHECK	$=$. $500000008+03$	-		
2CHEX = .SODOD00203					
SEND					
SSENSOR					
KSEN	$=$	$+0$			
NSEN	=	+12			
YSEN	$=$. $55000000 \mathrm{E}+03$,	. $45000000 \mathrm{E}+03$,	. 350000000e+03,	.25000000E+03,
		. $150000000+03$,	. $50000000 \mathrm{E}+52$,	-. 50000000E+02,	-. $15000000 \mathrm{t}+03$,
		-. $25000000 \mathrm{E}+63$,	-. $35000000 \mathrm{E}+03$,	-.45000000E+03,	-.55000000E+03,
		.00000000E+00,	. $00000000 \mathrm{e}+00$,	. $09000000 \mathrm{E}+00$,	. $000000000 \mathrm{E}+00$
ZSEN	$=$.60000000E+01,	. $600000005+01$,	. $60000000 \mathrm{E}+01$,	.60000000E+01,
		.60000000E+01,	.60000000E+91,	. $60000000 \mathrm{E}+01$,	. $600000500 \mathrm{E}+01$,
		.60000000E+01,	.60000000E+01,	.60000000E+01,	. $600000008+01$,
		.00000000E+00,	. $000000000+00$,	.00000000E+00,	.050000000E+00
PHI	$\underline{\square}$.27000000E +03 ,	. $27000000 \mathrm{E}+03$,	. $27000000 \mathrm{E}+03$,	.27000000E+03,
		.27000000et03,	.27000000E+03,	.27000000E+03,	. $27000000 \mathrm{E}+03$,
		.27000000E+03,	. $270000005+03$,	.270000008+03,	.27000000E+03,
		.27000000E +03 ,	. $270000005+03$,	. $27090000 \mathrm{E}+03$,	.27000000E+03
theta	$=$. $90000000 \mathrm{E}+02$,	. $90000000 \mathrm{E}+02$,	.99000000E+02,	.90000000E+02,
		. $90000000 \mathrm{E}+02$,	. $900000008+02$,	.90000000E+02,	. $90000000 \mathrm{E}+02$,
		.90000000E +02 ,	. $90000000 \mathrm{E}+02$,	. $900000000 \mathrm{t}+02$,	. $900000000 \mathrm{E}+02$,
		. $900000000 \mathrm{E}+02$,	. $90000000 \mathrm{E}+02$,	.90000000E+02,	. $90000000 \mathrm{E}+02$
ISENS	$=$	+0,	+0,	+ 0 ,	+0,
		\$3,	43.	43,	43,
		+3,	+3,	+3,	+3,
		+3,	+3,	43,	+3

3END
run cata carc
CONFIGURATION LaNDING，outboarg engine abay froh tower at icle
AIRCRAFT TYPE IS B7GT
RUN NUMBER 4
AIRCRAFT CISFLACEMENT FROH TOWER 273 FT
aIrcraft al tituce abreast of tower 294 ft
ATRCRAFT WEIGHT 261000．FOUNCS
AIRSFEEC 244.9 FT／SEC
temperature 5 degrees C（not usec）
INITIAL WINC SFEEC 7 MFH （NOT USED）
Initial hind angle o degrees true（not used）
FINAL WINC SFEEC 5 MFH （NOT USEC）
FINAL WIND ANGLE 10 CEGREES TRUE（NOT USED）
alrcraft heacing 130 cegrees magnetic
HONTH 10 CAY 18 HOUR 7 HINUTE 59 LOCAL TIME

```
.NUTFUT
SPEEC = -.24490500E+03
WEIGHT = .261000SOE +56
WSFRN = .14200000E+03
SENC
sm.og
HSPR = .40058082E+01
CFOWER = .62449599E+00
COEF = -.44856098E+02, .32959656E+00, .25889222E-03, .12560241E+02,
    .00000000E+00, .000000000E+00, .00000000E+00, .00000000E+00,
    .000000000E+00
```


SEND

GABHA IN FT＊\＃2／SEC $=3.84819925+03$
EDOY VISCOSITY INFI就／SEC $=5.06600792-01$
TEMPERATURE IN RANKINE $=4.96429741+02$
DENSITY IN SLUGS／FT中胡 $=2.48317368-03$
ACOUSTIC VELOCITY IN FT／SEC $=1.0922000$ THOS
STAB：LITYINI／SEC\＄ $2=0.00000000$
INITIAL PARAMETER （OIMENSIONLESS）$=0.00000000$

C-6

RUN 4 B707
FIRST TIME FOR S IS 22 FIRST IIME FOR F IS 38

C-8

C-12

C-14

C-16

Appendix D
DESCRIPTION OF INPUT REQUIREMENTS FOR LOCKHEED WAKE VORTEX TRANSPORT COMPUTER PROGRAM

This Appendix presents a summary of input namelist and input flag requirements for using the Lockheed Wake Vortex transport computer program.

D-2

-		N		4	1 l			
$\omega \omega \omega \geq 0$	z 2	\checkmark		z	-			
IEI m m	$0<0$	0	\cdots	-	+			≥ 2
	$\cdots 0$	d	z	4	\checkmark			\cdots
	$\cdots \mathrm{n}$	-	-	6	0	e	1	HEE
	를	-	-	0	\cdots	$>$	2	N0.

[^0]\[

$$
\begin{aligned}
& \begin{array}{l}
\text { NAMELIST IVORT) } \\
\text { VORTEX ALTITUDF ABOVE GROUNA } \\
\text { FLAG } \\
\text { ISIGHT }=O \text { PHOTOGRAPHIC INPUT IS NDT USED TO } \\
\text { ISIGHT }=1 \text { THETERMINE YORTEX STARTING POSITION } \\
\text { USEDTST PHOTOGRAPHIC YNPUT CARD IS } \\
\text { POSITION DETERMINE VORTEX STARTING }
\end{array}
\end{aligned}
$$
\]

[^1]

[^2]

Appendix E
SUMMARY OF LINE PRINTER OUTPUT OF LOCKHEED WAKE VORTEX TRANSPORT COMPUTER PROGRAM

LINE PRINTER OUTPUT

Print out on Page E-7
(1) Title from title card
(2) Standard aircraft chosen; not printed if standard aircraft not chosen
(3) Namelist INPUT

The printing of variable STIME does not reflect the effect of the selection of first Photographic Input Card used to determine the vortex starting position.

The printing of variables SPEED, WEIGHT and WSPAN reflects the effect of (2) but does not reflect the overriding of the Run Data Card, if selected.
(4) Namelist VORT
(5) Namelist WINDS

Print out on Page E-8
(5) Continuation of Namelist WINDS

The printing of variables ALTR, WSPR, CPOWER, COEF and COEFT does not reflect the least squares computations.
(6) Namelist SHEAR
(7) Namelist BUOY

Print out on Page E-9
(8) Namelist SENSOR
(49) Altitude in feet of port vortex
(50) Horizontal position in feet of starboard vortex relative to tower
(51) Same as (47)
(52) Horizontal position in feet of port vortex relative to tower
(53) Same as (49)
(54) Rate of change in feet per second of the horizontal position of the sta rboard vortex
(55) Rate of change in feet per second of the altitude of the starboard
(56) Rate of change in feet per second of the horizontal position of the (57) Rate of change in feet per second of the altitude of the port vortex
(58) Distance between vortex centers in feet
(59) Horizontal separation between vortex centers in feet
(60) Altitude difference between vortex centers in feet
(61) Tilt angle in degrees from horizontal of line through vortex centers. Positive is in the counterclockwise direction.
(62) Same as (61) but in radians
(63) Rate of change of angle described in (61). Units are degrees per
(64) Same as (63) but units are radians per second
(65) Difference in circulation between the two vortices in square feet
(66) Cross flight path windspeed in feet per second
(67) Wind velocity component in direction ground wind sensor is pointed at sensor location in feet per second.
(68) Orthogonal wind velocity components in feet per second at sensor
69) The magnitude of the wind velocity in feet per second

Print out on Page E-13
Information from photographic data cards.
(70) Time in seconds from vortex creation for the following observed positions.
(71) Same as (50) except this is observed
(72) Same as (51) except this is observed
(73) Same as (52) except this is observed
(74) Same as (53) except this is observed
(75) Same as 58 except computed from observed position
(76) Same as (59) except computed from observed position
(77) Same as 60 except computed from observed position
(78) Same as (61) except computed from observed position
(79) Same as (62) except computed from observed position
(80) Same as (54) except computed from observed positions before and after
(81) Same as (55) except computed from observed positions before and after
(82) Same as (56) except computed from observed positions before and after
(83) Same as (57) except computed from observed positions before and after
(84) Same as (63) except computed from observed positions before and after
(85) Same as (64) except computed from observed positions before and after
(86) Difference in circulation between the two vortices necessary to cause the angular rate (84).
(87) Same as (66) except computed from observed positions before and after

Print out on Page E-14
Information from Ground Wind Data Cards
(88) Position from tower of ground sensor (in feet)
(89) Time in seconds from vortex creation when starboard vortex passes over ground sensor
(90) Time in seconds from vortex creation when port vortex passes over ground sensor
(91) Same as (80) except computed from positions observed by the ground sensor
(92) Same as (82) except computed from positions observed by the ground sensor
(93) Cubic curve fit coefficients of cross flight path wind profile. Program does not use this curve fit.
$V_{\text {wind }}=-2.13-0.236 \mathrm{H}+1.731 * 10^{-3} \mathrm{H}^{2}-4.644 * 10^{-6} \mathrm{H}^{3}$
0.511 is the standard deviation of the points from the cubic curve.

E-11
SGAMMA IN FTH2/5FC = 3.44867923403
(3) EDNY VISCCSITY IN FTOOTISEC $=4.74849720-01$ (41) DENSTTY TN SLUGS/FTW03 E $2.47358737-03$
(44) INTTIAL PARAMETER (DTMENSIDNLESSI = 0.0000000n

PORT DISPLACEMENT
2 5FPARATION 5.00
-2.00
-5.00
-9.75
\circ
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{0}$

PMOTEGEADH.C DATA TIME FROM VORTEX GFNERATION 1
STARANARO RISOLACEMENT OFZ AND HEIGMT 100
STAROGAF VORTEX TRANSPORT VELOCITY Y COMPONENT -
PMOTOGOAPH.- MATA TIME FRON VORTEX GFNERATION is 2 2n

PHOTOGRAPH. C GATA TIMF FROM VORTEX GFNERATION IS 27
PORT DISPLACEMEMT - 12 AND HEIGHT E4
Z SFPARATION $5.00 \quad$ ANGLE FROM HORIZONTAL Z COMPONENT
Z COMPONENT
RUNWAY WIND VELOCITY
CROSS RUNWAY WIND VELOCITY

PORT DISPLACEMENT -68 AND HEIGHT 73
Z SEPARATION $3 . O D \quad$ ANGLE FROM HORIZONTAL
2.400-02

8
$\stackrel{8}{6}$

Appendix F
FLOW CHARTS FOR LOCKHEED WAKE VORTEX TRANSPORT COMPUTER PROGRAM
\square
1

I

Following is a detailed flow chart of the Lockheed Wake Vortex Trans port Computer Program. A simple block flow chart is presented at the conclusion of this Appendix to aid the user in establishing the general calling sequences.

F-10

Appendix G
SUMMARY OF PREDICTED WAKE VORTEX TRACKS AND COMPARISON WITH EXPERIMENT

LIST OF RUNS PROVIDED IN THIS APPENDIX

Aircraft Type	Run Number	Date (1972)	Page
DC6	79	19 August	
	81		
	83		
,	84		
\dagger	85	\dagger	
B747	1	16 September	
1	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	15		
	16		
	17	\dagger	
	27	17 September	
	30		
	31	I	
	33	\dagger	
	55	17 October	
	56		
	57		
	58		
	59		
+	60		
7	63	\downarrow	
B707	6	18 October	
1	7		
	8		
	9		
	10		
	13		
	15		
	18		
,	20		
\checkmark	21	\dagger	

LIST OF RUNS (Concluded)

Aircraft Type	Run Number	Date (1972)	Page
B707	26	18 October	
1	29	18 October	
	31		
	32	\dagger	
	34	1 November	
	35		
	37		
	40		
	41		
	42		
1	43		
\dagger	46	γ	

$$
\mathrm{G}-4
$$

FIRST TIME FOR 5 IS 16
FIRST TIME FOR F IS 26

$G-10$

[^3]

$$
\mathrm{G}-77
$$

RUN $37 \quad$ B707
FIRST TIME FOR S IS 30

Appendix H
REPORT OF INVENTIONS
\qquad

After a diligent review of the work performed under this contract, no new innovation, discovery, improvement or invention was made.

[^0]:

[^1]:

[^2]:

[^3]: otsplacement from toner in feet

